badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade:

                        

Let u_n = coefficient of x^n in (1-x)^{-p}, p is an integer Find the sum to N-terms of the series {u_0,u_1...} for a) p=1 b) p=2 c) p=3 Genralize the procedure.

11 years ago

Answers : (1)

Ramesh V
70 Points
							

These binomial expansions are infinite

The general series is :

 (1-x)-p =1+ px+ p(p+1)/2! x2 + p(p+1)(p+2)/3! x3 + ............ + p+r-1Cr xr + .............

for p=1   (1-x)-1 = 1+x+x2+x3+x4+ ......  +xn-1 + .....

          sum to n terms(u0,u1,u2,...un-1) is 1+1+1+...(n) terms  ,  so sum is n

for p=2   (1-x)-2 = 1+2x+3x2+4x3+5x4+ ......  +(n)xn-1 + .....

          sum to n terms(u0,u1,u2,...un-1) is 1+2+3+...+n  , so sum is n(n+1)/2

for p=3   (1-x)-2 = 1+3x+6x2+10x3+ ......  +(n+1)C(n-1)xn-1 +(n+2)C(n)xn .....

          sum to n terms(u0,u1,u2,...un-1) is 2C0+3C1+4C2+5C3+..........+ (n+1)C(n-1)     so sum is 

                                        i.e.,  = 1 +  Σ (n+1)C(n-1)

                                                =  1 + [( Σn2 + Σn) /2]

sum to n terms for p=3       = ( 2n3 + 3n2+ n +6)/6

 
11 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 101 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details