Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
Let u_n = coefficient of x^n in (1-x)^{-p}, p is an integer Find the sum to N-terms of the series {u_0,u_1...} for a) p=1 b) p=2 c) p=3 Genralize the procedure. Let u_n = coefficient of x^n in (1-x)^{-p}, p is an integer Find the sum to N-terms of the series {u_0,u_1...} for a) p=1 b) p=2 c) p=3 Genralize the procedure.
These binomial expansions are infinite The general series is : (1-x)-p =1+ px+ p(p+1)/2! x2 + p(p+1)(p+2)/3! x3 + ............ + p+r-1Cr xr + ............. for p=1 (1-x)-1 = 1+x+x2+x3+x4+ ...... +xn-1 + ..... sum to n terms(u0,u1,u2,...un-1) is 1+1+1+...(n) terms , so sum is n for p=2 (1-x)-2 = 1+2x+3x2+4x3+5x4+ ...... +(n)xn-1 + ..... sum to n terms(u0,u1,u2,...un-1) is 1+2+3+...+n , so sum is n(n+1)/2 for p=3 (1-x)-2 = 1+3x+6x2+10x3+ ...... +(n+1)C(n-1)xn-1 +(n+2)C(n)xn ..... sum to n terms(u0,u1,u2,...un-1) is 2C0+3C1+4C2+5C3+..........+ (n+1)C(n-1) so sum is i.e., = 1 + Σ (n+1)C(n-1) = 1 + [( Σn2 + Σn) /2] sum to n terms for p=3 = ( 2n3 + 3n2+ n +6)/6
These binomial expansions are infinite
The general series is :
(1-x)-p =1+ px+ p(p+1)/2! x2 + p(p+1)(p+2)/3! x3 + ............ + p+r-1Cr xr + .............
for p=1 (1-x)-1 = 1+x+x2+x3+x4+ ...... +xn-1 + .....
sum to n terms(u0,u1,u2,...un-1) is 1+1+1+...(n) terms , so sum is n
for p=2 (1-x)-2 = 1+2x+3x2+4x3+5x4+ ...... +(n)xn-1 + .....
sum to n terms(u0,u1,u2,...un-1) is 1+2+3+...+n , so sum is n(n+1)/2
for p=3 (1-x)-2 = 1+3x+6x2+10x3+ ...... +(n+1)C(n-1)xn-1 +(n+2)C(n)xn .....
sum to n terms(u0,u1,u2,...un-1) is 2C0+3C1+4C2+5C3+..........+ (n+1)C(n-1) so sum is
i.e., = 1 + Σ (n+1)C(n-1)
= 1 + [( Σn2 + Σn) /2]
sum to n terms for p=3 = ( 2n3 + 3n2+ n +6)/6
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -