Flag Algebra> inequality...
question mark

The solution of inequality (x+1)(x2+1)1/2>x2-1 is

(a) {-1} U [2,infinite)

(b) [-1,infinite)

(c){-4}u[2,3]

(d)(-5,infinite)

Vaibhav Mathur , 16 Years ago
Grade 12
anser 1 Answers
AskIITians Expert Hari Shankar IITD

Hi,

I am assuming your question is (x+1) sqrt(x2+1) > x2-1.

This can be re-written as (x+1) sqrt(x2+1) > (x+1)(x-1)

Case 1 : (x+1)>0, or x > -1

In this case, we can cancel (x+1) in both sides.

We get sqrt(x2+1)>(x-1)

This is valid for all x>(-1). So Case 1 gives a solution x> -1

Case 2: (x+1)<0 or x < -1

We can still cancel (x+1) from both sides, but since (x+1) is negative, we have to change the > sign to <.

SO now we have sqrt(x2+1) < (x-1).

This is not possible because x-1< -2 (because x< -1 in this case).

And sqrt() will always be positive, so it can never be less than -1.

Hence Case 2 gives no results.

Therefore the answer is x > -1 or x = (-1,inf). This is not mentioned in any of the options so all options are INCORRECT.

You can verify this by putting x=-1 and x=-3. Putting x=-1, we get LHS=0 and RHS=0, SoLHS>RHS is not true. So x=-1 is not a solution. So options A and B are wrong. Similarly, we find that x=-3 soes NOT satisfy the equation, so options C and D are also wrong. 

Correct range is (-1,inf)

 

 

 

Last Activity: 16 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments