Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
Find the fourth root of of -16i
let Z is the fourth root of of -16i
Z= (-16i)1/4
={(16)(-1)(i) }1/4
={ 16i3 }1/4 (i2 =-1)
=2 {( (i)4 )3/16 } (i4 =1)
Z=2
Actually, its complex. And there are four of them. And each one has an imaginary component equal in magnitude to its real components magnitude, because they lie on the y = x and y = -x lines, 45° incline/decline from the x(real)-axis and each root is therefore 90° rotated from the next. 4th root of -16 = ±√2 ± i√2. Anyway, if you take a purely positive real number and find its fourth root, you will get both positive and negative, purely real and purely imaginary roots. If you take a positive or negative, pure imaginary or real number and raised it to the fourth power, it will be a positive real number.
So, the only option for a fourth root of a negative real would be elsewhere on the complex plane. I hope this sheds some light on your question. I know it doesn't answer it directly as you intended it, but maybe helps you somewhat with it!
Register Yourself for a FREE Demo Class by Top IITians & Medical Experts Today !