Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

what is proof of A*adj(A) = |A|*I where A is a square matrix of order n and I is identity matrix of order n. plz reply with proper derivation.

what is proof of


A*adj(A) = |A|*I


where A is a square matrix of order n and I is identity matrix of order n. plz reply with proper derivation.


 

Grade:

1 Answers

SAGAR SINGH - IIT DELHI
879 Points
11 years ago

Dear vikash,

As a consequence of Laplace formula for the determinant of an n×n matrix A, we have

\mathbf{A}\, \mathrm{adj}(\mathbf{A}) = \mathrm{adj}(\mathbf{A})\, \mathbf{A} = \det(\mathbf{A})\, \mathbf{I}\qquad (*)

where I is the n×n identity matrix Indeed, the (i,i) entry of the product A adj(A) is the scalar product of row i of A with row i of the cofactor matrix C, which is simply the Laplace formula for det(A) expanded by row i. Moreover, for ij the (i,j) entry of the product is the scalar product of row i of A with row j of C, which is the Laplace formula for the determinant of a matrix whose i and j rows are equal and is therefore zero.

From this formula follows one of the most important results in matrix algebra: A matrix A over a commutative ring R is invertible if and only if det(A) is invertible in R.

For if A is an invertible matrix then

1 = \det(\mathbf I) = \det(\mathbf{A} \mathbf{A}^{-1}) = \det(\mathbf{A}) \det(\mathbf{A}^{-1}),

and if det(A) is a unit then (*) above shows that

\mathbf{A}^{-1} = \det(\mathbf{A})^{-1}\, \mathrm{adj}(\mathbf{A}).

We are all IITians and here to help you in your IIT JEE preparation.

All the best.

 If you like this answer please approve it....

win exciting gifts by answering the questions on Discussion Forum

 

Sagar Singh

B.Tech IIT Delhi

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free