Arun
Last Activity: 7 Years ago
Given: Let PQ and RS be two equal chords of a given circle and they are intersecting each other at point T.
To prove: PT = RT and ST = QT
Construction: Draw OV⊥ PQ and OU ⊥ SR. Join OT.
Proof: In ΔOVT and ΔOUT,
OV = OU (Equal chords of a circle are equidistant from the centre)
OT = OT (Common )
∴ ΔOVT ≅ ΔOUT ( R.H.S.)
⇒ VT= UT (By CPCT )
⇒ PV + VT = RU + UT (∵ AV = RU = ( ½ )PQ = (½) RS
⇒ PT = RT
⇒ PQ – PT = SR – RT (Given PQ = RS )
⇒ QT= ST.