Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

please give the solutions of these sums. please see the attachment. thanks

please give the solutions of these sums. please see the attachment. 
thanks

Question Image
Grade:9

1 Answers

Ram Kushwah
108 Points
2 years ago
Q27:Let m=2x=3y=6-z
So m1/x=2-------(1)
m1/y=3-----------(2)
and m=6-z
m1/z=6-1=1/6-----(3)
 
On multiplication of uquarion (1).(2) and (3) we get
 
m1/x*m1/y*m1/z=2*3*1/6
m(1/x+1/y+1/z)=1=m0
Hence 1/x+1/y+1/z = 0
Hence proved
--------------------------------------------------------------------------------------------------
Q28:
Let us take first  7√3/(√10+√3
=7√3/(√10-√3)/(√10+√3)/(√10-√3)
=7*(√30-√3*√3)/(10-3)
So 7√3/(√10+√3=7/7(√30-3)=√30-3--------(1)
 
  2√5/(√6+√5) = 2√5*(√6-√5) / (√6+√5)(√6-√5)
=(2√30-2√5*√5) / (6-5)
2√5/(√6-√5)=(2√30+2*5)=2√30-10-----(2)
 
  3√2/(√15+3√2)=3√2(√15-3√2)  / (√15+3√2)(√15-3√2)
=(3√30-9*√2*√2)/(15-18)
=3/-3(√30 – 3*2)= -(√30-6)
32 / (√15+3√2) = 6-30---------------(3)
 
Hence the given expression using (1) (2) and (3)
 
=√30-3-(2√30-10)-(6-30)
=√30-3-2√30+10-6+30
=10-3-6
=1
Hence proved
 
 
 

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free