Arun
Last Activity: 5 Years ago
Height of the cone (h) = 24 cm
Let r сm be the radius of the base and l cm be the slant height of the cone. Then,
l = root under (√r2+ h2 ) = root under (√r2 + 242) = root under (√r2 + 576)
Now, Curved surface area = πrl ⇒ 22/7 x r x root under (√r2 + 576) = 550
⇒ r root under (√r2 + 576) = 550 x 7/22 ⇒ r root under (√r2 + 576) = 175
Squaring both the sides we get
r2(r2 + 576) = 30625
(r2)2 + 576r2 - 30625 = 0
Let r2 = x
∴ x2 + 576x - 30625 = 0
x2 + 625x – 49x - 30625 = 0
x(x + 625) - 49(x + 625) = 0
(x + 625)(x - 49) = 0
x + 625 = 0, x - 49 = 0
x = - 625, x = 49
x is not equals to - 625, x = 49
∴ r2 = 49 ⇒ r = √49 ⇒ r = 7 cm
∴ Volume of the cone = 1/3πr2h = 1/3 x 22/7 x 72 x 24 = 1232 cm3