Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91 7353221155

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Find the cube root of each of the following numbers by prime factorisation method.(i) 64(ii) 512(iii) 10648(iv) 27000(v) 15625

Harshit Singh
23 days ago
Dear Student
(i) 64

Solution:

64 = 2×2×2×2×2×2

By grouping the factors in triplets of equal factors, 64 = (2×2×2)×(2×2×2)

Here, 64 can be grouped into triplets of equal factors,

∴ 64 = 2×2 = 4

Hence, 4 is cube root of 64.

(ii) 512

Solution:

512 = 2×2×2×2×2×2×2×2×2

By grouping the factors in triplets of equal factors, 512 = (2×2×2)×(2×2×2)×(2×2×2)

Here, 512 can be grouped into triplets of equal factors,

∴ 512 = 2×2×2 = 8

Hence, 8 is cube root of 512.

(iii) 10648

Solution:

10648 = 2×2×2×11×11×11

By grouping the factors in triplets of equal factors, 10648 = (2×2×2)×(11×11×11)

Here, 10648 can be grouped into triplets of equal factors,

∴ 10648 = 2 ×11 = 22

Hence, 22 is cube root of 10648.

(iv) 27000

Solution:

27000 = 2×2×2×3×3×3×3×5×5×5

By grouping the factors in triplets of equal factors, 27000 = (2×2×2)×(3×3×3)×(5×5×5)

Here, 27000 can be grouped into triplets of equal factors,

∴ 27000 = (2×3×5) = 30

Hence, 30 is cube root of 27000.

(v) 15625

Solution:

15625 = 5×5×5×5×5×5

By grouping the factors in triplets of equal factors, 15625 = (5×5×5)×(5×5×5)

Here, 15625 can be grouped into triplets of equal factors,

∴ 15625 = (5×5) = 25

Hence, 25 is cube root of 15625.

Thanks