Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

In ΔABC ∠ACB = 120º and ∠CAB = 40º. AC is extended to P such that AP = AC + 2CB. The measure of ∠ABP is 1) 60º 2) 120º 3) 110º 4) 100º

In ΔABC ∠ACB = 120º and ∠CAB = 40º. AC is extended to P such that AP = AC + 2CB. The measure of ∠ABP is
 
1) 60º
2) 120º
3) 110º
4) 100º 

Grade:7

2 Answers

Arun
25763 Points
one year ago
Here angle ACB=120 and angle CAB=40 degreeSo Angle ABC= 1801204020 degreeand using linear pair property, BCP=180120=60 degreeNow lets take mid point of CP as M and then CM=MP........(1)GivenAP=AC+2CBor AC+CP=AC+2CBCP=2CB........(2)CM+MP=2CBCM+CM=2CB2CM=2CBCM=CBmeans triangle CMB is isosceles, So in triangle BMC, CMB=CBMUsing angle sum property in  triangle BMCCMB+CBM=18060=120or CMB=CBM=60 degreeSo angle BMP= 18060=120 degree [Linear pair]So finally triangle BMCis equilateral triangle.So CM=MBNow using equation 1, MP=MBSo in triangle BMP, MBP=MPB.............(3)Using angle sum property in triangle MPB, MBP+MPB+120=180or MBP+MBP=60MBP=30 degreeSo angle ABP=20+60+30=110 degree
 
Rahul Sanapala
44 Points
one year ago
Seems like there is a problem. Your answer/solution is blank, could you please kindly repost the solution , Sir?

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free