Flag 12 grade physics others> A spherically symmetric charge distributi...
question mark

A spherically symmetric charge distribution is characterized by a charge density having the following variation:
p(r) = p₀ (1 - r/R) for r < R
p(r) = 0 for r ≥ R
Where r is the distance from the center of the charge distribution and p₀ is a constant. The electric field at an internal point r is:
A. (p₀ / 4ε₀) * (r/3 - r² / 4R)
B. (p₀ / ε₀) * (r/3 - r² / 4R)
C. (p₀ / 3ε₀) * (r/3 - r² / 4R)
D. (p₀ / 12ε₀) * (r/3 - r² / 4R)

Aniket Singh , 9 Months ago
Grade
anser 1 Answers
Askiitians Tutor Team

We are tasked with calculating the electric field inside a spherically symmetric charge distribution characterized by the charge density:
ρ(r)=ρ0(1−rR) for rwhere rr is the radial distance from the center, RR is the radius of the distribution, and ρ0\rho_0 is a constant. We need to find the electric field at a point inside (rStep 1: Total Charge Enclosed at a Radius rr
Using Gauss's law, the electric field EE at a distance rr depends on the total charge enclosed within radius rr. To calculate this, we integrate the charge density ρ(r)\rho(r) over the spherical volume:
Qenc(r)=∫0rρ(r′)⋅4πr′2 dr′,Q_{\text{enc}}(r) = \int_0^r \rho(r') \cdot 4\pi r'^2 \, dr',
where r′r' is a dummy variable for integration. Substituting the charge density:
Qenc(r)=∫0rρ0(1−r′R)4πr′2 dr′.Q_{\text{enc}}(r) = \int_0^r \rho_0 \left( 1 - \frac{r'}{R} \right) 4\pi r'^2 \, dr'.
Step 2: Split the Integral
Expand the expression:
Qenc(r)=4πρ0∫0r(r′2−r′3R)dr′.Q_{\text{enc}}(r) = 4\pi \rho_0 \int_0^r \left( r'^2 - \frac{r'^3}{R} \right) dr'.
Separate the terms:
Qenc(r)=4πρ0[∫0rr′2 dr′−1R∫0rr′3 dr′].Q_{\text{enc}}(r) = 4\pi \rho_0 \left[ \int_0^r r'^2 \, dr' - \frac{1}{R} \int_0^r r'^3 \, dr' \right].
Step 3: Evaluate Each Integral
1. First integral:
∫0rr′2 dr′=[r′33]0r=r33.\int_0^r r'^2 \, dr' = \left[ \frac{r'^3}{3} \right]_0^r = \frac{r^3}{3}.
2. Second integral:
∫0rr′3 dr′=[r′44]0r=r44.\int_0^r r'^3 \, dr' = \left[ \frac{r'^4}{4} \right]_0^r = \frac{r^4}{4}.
Substitute these results back:
Qenc(r)=4πρ0[r33−1R⋅r44].Q_{\text{enc}}(r) = 4\pi \rho_0 \left[ \frac{r^3}{3} - \frac{1}{R} \cdot \frac{r^4}{4} \right].
Simplify:
Qenc(r)=4πρ0(r33−r44R).Q_{\text{enc}}(r) = 4\pi \rho_0 \left( \frac{r^3}{3} - \frac{r^4}{4R} \right).
Step 4: Use Gauss's Law
From Gauss's law, the electric field E(r)E(r) at a distance rr is:
E(r)=14πε0⋅Qenc(r)r2.E(r) = \frac{1}{4\pi \varepsilon_0} \cdot \frac{Q_{\text{enc}}(r)}{r^2}.
Substitute Qenc(r)Q_{\text{enc}}(r):
E(r)=14πε0⋅4πρ0(r33−r44R)r2.E(r) = \frac{1}{4\pi \varepsilon_0} \cdot \frac{4\pi \rho_0 \left( \frac{r^3}{3} - \frac{r^4}{4R} \right)}{r^2}.
Simplify:
E(r)=ρ0ε0(r3−r24R).E(r) = \frac{\rho_0}{\varepsilon_0} \left( \frac{r}{3} - \frac{r^2}{4R} \right).
The electric field at an internal point rE(r)=ρ0ε0(r3−r24R).E(r) = \frac{\rho_0}{\varepsilon_0} \left( \frac{r}{3} - \frac{r^2}{4R} \right).
The correct option is:
B) ρ0ε0(r3−r24R)\frac{\rho_0}{\varepsilon_0} \left( \frac{r}{3} - \frac{r^2}{4R} \right).

Last Activity: 9 Months ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments



question mark

Of which material is a potentiometer wire normally made and why?

Grade 12 > 12 grade physics others
1 Answer Available

Last Activity: 2 Months ago

question mark

Spring constant is a dimensional contant. Justify.

Grade 12 > 12 grade physics others
1 Answer Available

Last Activity: 2 Months ago

question mark

The width of the class interval 30-40 is:

  • A. 10
  • B. 30
  • C. 40
  • D. 70
Grade 12 > 12 grade physics others
1 Answer Available

Last Activity: 2 Months ago