To solve the integral ∫ cos(2x) cos(4x) cos(6x) dx, we can use a product-to-sum identity to simplify the expression. The product-to-sum identities help convert products of cosines into sums, making integration easier.
Step 1: Apply Product-to-Sum Identities
We can start by combining two of the cosine functions. Let's first combine cos(2x) and cos(6x):
- cos(A) cos(B) = 1/2 [cos(A + B) + cos(A - B)
Using this identity:
cos(2x) cos(6x) = 1/2 [cos(8x) + cos(4x)]
Step 2: Substitute Back into the Integral
Now, we can rewrite the integral:
∫ cos(2x) cos(4x) cos(6x) dx = ∫ (1/2 [cos(8x) + cos(4x)]) cos(4x) dx
Step 3: Expand the Integral
Next, we can distribute cos(4x):
∫ (1/2 [cos(8x) cos(4x) + cos(4x) cos(4x)]) dx
Now, apply the product-to-sum identity again for cos(8x) cos(4x):
cos(8x) cos(4x) = 1/2 [cos(12x) + cos(4x)]
Step 4: Combine and Simplify
Substituting this back, we have:
∫ (1/2 [1/2 (cos(12x) + cos(4x)) + cos^2(4x)]) dx
Now, we can simplify further:
∫ (1/4 cos(12x) + 1/4 cos(4x) + 1/2 (1 + cos(8x))) dx
Step 5: Integrate Each Term
Now, we can integrate each term separately:
- ∫ cos(12x) dx = (1/12) sin(12x)
- ∫ cos(4x) dx = (1/4) sin(4x)
- ∫ cos(8x) dx = (1/8) sin(8x)
Putting it all together, we have:
∫ cos(2x) cos(4x) cos(6x) dx = (1/48) sin(12x) + (1/16) sin(4x) + (1/16) x + C
Final Result
The final answer for the integral is:
∫ cos(2x) cos(4x) cos(6x) dx = (1/48) sin(12x) + (1/16) sin(4x) + (1/16) x + C