Flag 11 grade maths others> Prove the trigonometric identity:tan(4x...
question mark

Prove the trigonometric identity:

tan(4x) = (4 tan(x) (1 - tan²(x))) / (1 - 6 tan²(x) + tan⁴(x))






Aniket Singh , 11 Months ago
Grade
anser 1 Answers
Askiitians Tutor Team

To prove the trigonometric relation:

\[
\tan(4x) = \dfrac{{4\tan x(1 - \tan^2 x)}}{{1 - 6\tan^2 x + \tan^4 x}}
\]

### Step 1: Use the multiple angle identity for \(\tan(4x)\)

We know the identity for \(\tan(2A)\) is:

\[
\tan(2A) = \dfrac{2\tan(A)}{1 - \tan^2(A)}
\]

Now, apply this identity for \(\tan(4x)\) as \(\tan(2 \cdot 2x)\):

\[
\tan(4x) = \dfrac{2\tan(2x)}{1 - \tan^2(2x)}
\]

### Step 2: Find \(\tan(2x)\)

Using the identity for \(\tan(2A)\):

\[
\tan(2x) = \dfrac{2\tan(x)}{1 - \tan^2(x)}
\]

### Step 3: Substitute \(\tan(2x)\) into the expression for \(\tan(4x)\)

Now, substitute the expression for \(\tan(2x)\) into the formula for \(\tan(4x)\):

\[
\tan(4x) = \dfrac{2 \cdot \dfrac{2\tan(x)}{1 - \tan^2(x)}}{1 - \left( \dfrac{2\tan(x)}{1 - \tan^2(x)} \right)^2}
\]

### Step 4: Simplify the numerator

The numerator becomes:

\[
2 \cdot \dfrac{2\tan(x)}{1 - \tan^2(x)} = \dfrac{4\tan(x)}{1 - \tan^2(x)}
\]

### Step 5: Simplify the denominator

The denominator is:

\[
1 - \left( \dfrac{2\tan(x)}{1 - \tan^2(x)} \right)^2
\]

First, square the fraction:

\[
\left( \dfrac{2\tan(x)}{1 - \tan^2(x)} \right)^2 = \dfrac{4\tan^2(x)}{(1 - \tan^2(x))^2}
\]

So the denominator becomes:

\[
1 - \dfrac{4\tan^2(x)}{(1 - \tan^2(x))^2}
\]

Now, express 1 with a common denominator:

\[
1 = \dfrac{(1 - \tan^2(x))^2}{(1 - \tan^2(x))^2}
\]

So the denominator is:

\[
\dfrac{(1 - \tan^2(x))^2 - 4\tan^2(x)}{(1 - \tan^2(x))^2}
\]

Simplify the numerator:

\[
(1 - \tan^2(x))^2 - 4\tan^2(x) = 1 - 2\tan^2(x) + \tan^4(x) - 4\tan^2(x) = 1 - 6\tan^2(x) + \tan^4(x)
\]

So the denominator becomes:

\[
\dfrac{1 - 6\tan^2(x) + \tan^4(x)}{(1 - \tan^2(x))^2}
\]

### Step 6: Substitute the simplified expressions for the numerator and denominator

Now substitute the simplified numerator and denominator into the formula for \(\tan(4x)\):

\[
\tan(4x) = \dfrac{\dfrac{4\tan(x)}{1 - \tan^2(x)}}{\dfrac{1 - 6\tan^2(x) + \tan^4(x)}{(1 - \tan^2(x))^2}}
\]

### Step 7: Simplify the complex fraction

To simplify the complex fraction, multiply the numerator by the reciprocal of the denominator:

\[
\tan(4x) = \dfrac{4\tan(x)}{1 - \tan^2(x)} \cdot \dfrac{(1 - \tan^2(x))^2}{1 - 6\tan^2(x) + \tan^4(x)}
\]

Cancel one factor of \(1 - \tan^2(x)\):

\[
\tan(4x) = \dfrac{4\tan(x)(1 - \tan^2(x))}{1 - 6\tan^2(x) + \tan^4(x)}
\]

### Final Answer:

Thus, we have proved that:

\[
\tan(4x) = \dfrac{4\tan(x)(1 - \tan^2(x))}{1 - 6\tan^2(x) + \tan^4(x)}
\]

Last Activity: 11 Months ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments