Flag 11 grade maths others> Evaluate: (1 + i)^6 + (1 - i)^3...
question mark

Evaluate: (1 + i)^6 + (1 - i)^3

Aniket Singh , 9 Months ago
Grade
anser 1 Answers
Askiitians Tutor Team

Last Activity: 9 Months ago

We are tasked with evaluating the expression:

(1 + i)^6 + (1 - i)^3

Step 1: Simplify (1 + i)^6
First, we'll simplify (1 + i)^6. We use the binomial expansion formula for this:

(a + b)^n = Σ (nCk) * a^(n-k) * b^k

For (1 + i)^6, we expand using the binomial theorem:

(1 + i)^6 = Σ (6Ck) * 1^(6-k) * i^k for k = 0 to 6

Calculating the terms:

For k = 0: (6C0) * 1^6 * i^0 = 1 * 1 * 1 = 1
For k = 1: (6C1) * 1^5 * i^1 = 6 * 1 * i = 6i
For k = 2: (6C2) * 1^4 * i^2 = 15 * 1 * (-1) = -15
For k = 3: (6C3) * 1^3 * i^3 = 20 * 1 * (-i) = -20i
For k = 4: (6C4) * 1^2 * i^4 = 15 * 1 * 1 = 15
For k = 5: (6C5) * 1^1 * i^5 = 6 * 1 * i = 6i
For k = 6: (6C6) * 1^0 * i^6 = 1 * 1 * (-1) = -1
Now, adding all the terms together:

(1 + i)^6 = 1 + 6i - 15 - 20i + 15 + 6i - 1

Simplify:

= (1 - 15 + 15 - 1) + (6i - 20i + 6i)

= 0 - 8i

Thus, (1 + i)^6 = -8i.

Step 2: Simplify (1 - i)^3
Next, we simplify (1 - i)^3. Using the binomial expansion again:

(1 - i)^3 = Σ (3Ck) * 1^(3-k) * (-i)^k for k = 0 to 3

Calculating the terms:

For k = 0: (3C0) * 1^3 * (-i)^0 = 1 * 1 * 1 = 1
For k = 1: (3C1) * 1^2 * (-i)^1 = 3 * 1 * (-i) = -3i
For k = 2: (3C2) * 1^1 * (-i)^2 = 3 * 1 * (-1) = -3
For k = 3: (3C3) * 1^0 * (-i)^3 = 1 * 1 * i = i
Now, adding all the terms together:

(1 - i)^3 = 1 - 3i - 3 + i

Simplify:

= (1 - 3) + (-3i + i)

= -2 - 2i

Thus, (1 - i)^3 = -2 - 2i.

Step 3: Add the results
Now, we add the two results together:

(1 + i)^6 + (1 - i)^3 = (-8i) + (-2 - 2i)

Simplify:

= -2 - 8i - 2i

= -2 - 10i

Thus, the final answer is:

-2 - 10i

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments