 ×     #### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
what is proof of converse of basic propornality theorem

```
5 years ago

```							Converse of Basic Proportionality TheoremStatement If a line divides any two sides of a triangle (Δ) in the same ratio, then the line must be parallel (||) to the third side.Diagram Given In ΔABC, D and E are the two points of AB and AC respectively, such that, AD/DB = AE/EC.To Prove DE || BCProof In ΔABC,given, AD/DB = AE/EC ----- (1) Let us assume that in ΔABC, the point F is an intersect on the side AC. So we can apply the Thales Theorem, AD/DB = AF/FC ----- (2) Simplify, in (1) and (2) ==> AE/EC = AF/FC Add 1 on both sides, ==> (AE/EC) + 1 = (AF/FC) + 1 ==> (AE+EC)/EC = (AF+FC)/FC ==> AC/EC = AC/FC ==> EC = FC From the above, we can say that the points E and F coincide on AC. i.e., DF coincides with DE. Since DF is parallel to BC, DE is also parallel BC Hence the Converse of Basic Proportionality therorem is proved
```
5 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on 10 grade maths

View all Questions »  ### Course Features

• 728 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 731 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions