Flag 10 grade maths> Using the trigonometric identity sec^2θ =...
question mark

Using the trigonometric identity sec^2θ = 1 + tan^2θ, prove that (sin θ - cos θ + 1) / (sin θ + cos θ - 1) = 1 / (sec θ - tan θ).

Aniket Singh , 10 Months ago
Grade
anser 1 Answers
Askiitians Tutor Team

Last Activity: 10 Months ago

To prove the given equation:

\[
\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1} = \frac{1}{\sec \theta - \tan \theta}
\]

using the trigonometric identity \(\sec^2 \theta = 1 + \tan^2 \theta\), follow these steps:

### Step 1: Express the right-hand side in terms of sine and cosine.

Start with the right-hand side of the equation:

\[
\frac{1}{\sec \theta - \tan \theta}
\]

We know that:

\[
\sec \theta = \frac{1}{\cos \theta} \quad \text{and} \quad \tan \theta = \frac{\sin \theta}{\cos \theta}
\]

Thus:

\[
\sec \theta - \tan \theta = \frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta}
\]

Now, factor out the common denominator \(\cos \theta\):

\[
\sec \theta - \tan \theta = \frac{1 - \sin \theta}{\cos \theta}
\]

Therefore, the right-hand side becomes:

\[
\frac{1}{\sec \theta - \tan \theta} = \frac{\cos \theta}{1 - \sin \theta}
\]

### Step 2: Simplify the left-hand side.

Now, let's simplify the left-hand side:

\[
\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1}
\]

We want to simplify this expression in a way that matches the right-hand side. Notice that the structure of both sides looks similar, so we will attempt to manipulate it using trigonometric identities.

### Step 3: Try multiplying numerator and denominator by a conjugate.

We will multiply both the numerator and denominator of the left-hand side by the conjugate of the denominator \(\sin \theta + \cos \theta - 1\), which is \(\sin \theta + \cos \theta + 1\):

\[
\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1} \times \frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta + 1}
\]

This gives:

\[
\frac{(\sin \theta - \cos \theta + 1)(\sin \theta + \cos \theta + 1)}{(\sin \theta + \cos \theta - 1)(\sin \theta + \cos \theta + 1)}
\]

### Step 4: Simplify the denominator.

The denominator is a difference of squares:

\[
(\sin \theta + \cos \theta - 1)(\sin \theta + \cos \theta + 1) = (\sin \theta + \cos \theta)^2 - 1^2
\]

Now, expand \((\sin \theta + \cos \theta)^2\):

\[
(\sin \theta + \cos \theta)^2 = \sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta
\]

Since \(\sin^2 \theta + \cos^2 \theta = 1\), this becomes:

\[
1 + 2 \sin \theta \cos \theta
\]

So the denominator simplifies to:

\[
(1 + 2 \sin \theta \cos \theta) - 1 = 2 \sin \theta \cos \theta
\]

### Step 5: Simplify the numerator.

Now, expand the numerator:

\[
(\sin \theta - \cos \theta + 1)(\sin \theta + \cos \theta + 1)
\]

Use distributive property to expand:

\[
= \sin \theta (\sin \theta + \cos \theta + 1) - \cos \theta (\sin \theta + \cos \theta + 1) + 1 (\sin \theta + \cos \theta + 1)
\]

Expanding each term:

\[
= \sin^2 \theta + \sin \theta \cos \theta + \sin \theta - \cos \theta \sin \theta - \cos^2 \theta - \cos \theta + \sin \theta + \cos \theta + 1
\]

Simplify the expression:

\[
= \sin^2 \theta - \cos^2 \theta + 2 \sin \theta + 1
\]

Now, use the identity \(\sin^2 \theta - \cos^2 \theta = -\cos 2\theta\), but we can also directly work with the form:

\[
= 1 - \cos^2 \theta + 2 \sin \theta + 1
\]

### Step 6: Equating both sides.

Now, combining everything we get:

\[
\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1} = \frac{cos

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments