Flag 10 grade maths> Use the definitions of sinh(x) and cosh(x...
question mark

Use the definitions of sinh(x) and cosh(x) in terms of exponential functions to prove that cosh(2x) = 2cosh²(x) - 1.

Aniket Singh , 9 Months ago
Grade
anser 1 Answers
Askiitians Tutor Team

Last Activity: 9 Months ago

We are asked to prove the identity:

cosh(2x) = 2cosh²(x) - 1

Step 1: Recall the definitions of sinh(x) and cosh(x)
The hyperbolic sine and cosine functions are defined in terms of exponential functions as follows:

sinh(x) = (e^x - e^(-x)) / 2
cosh(x) = (e^x + e^(-x)) / 2
Step 2: Express cosh(2x) using the definition of cosh
We need to find cosh(2x). Using the definition of cosh(x), we get:

cosh(2x) = (e^(2x) + e^(-2x)) / 2

Step 3: Express cosh²(x)
Now, we calculate cosh²(x) from its definition:

cosh(x) = (e^x + e^(-x)) / 2 Therefore, cosh²(x) = [(e^x + e^(-x)) / 2]² cosh²(x) = (e^(2x) + 2 + e^(-2x)) / 4

Step 4: Multiply cosh²(x) by 2
To find 2cosh²(x), we multiply cosh²(x) by 2:

2cosh²(x) = 2 * (e^(2x) + 2 + e^(-2x)) / 4 2cosh²(x) = (e^(2x) + 2 + e^(-2x)) / 2

Step 5: Compare cosh(2x) with 2cosh²(x) - 1
Now, we compare cosh(2x) and 2cosh²(x) - 1:

cosh(2x) = (e^(2x) + e^(-2x)) / 2 2cosh²(x) - 1 = (e^(2x) + 2 + e^(-2x)) / 2 - 1

Simplifying the right-hand side:

2cosh²(x) - 1 = (e^(2x) + e^(-2x)) / 2 + 1 - 1 2cosh²(x) - 1 = (e^(2x) + e^(-2x)) / 2

Step 6: Conclusion
We see that both sides of the equation are equal:

cosh(2x) = 2cosh²(x) - 1

Thus, the identity is proved.

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments