Flag 10 grade maths> Prove that (sinA - cosA + 1) / (sinA + co...
question mark

Prove that (sinA - cosA + 1) / (sinA + cosA - 1) = 1 / (secA - tanA)

Aniket Singh , 11 Months ago
Grade
anser 1 Answers
Askiitians Tutor Team

We need to prove:

(sin A - cos A + 1) / (sin A + cos A - 1) = 1 / (sec A - tan A)

Step-by-step proof:

Simplify the expression for sec A and tan A:

sec A = 1 / cos A
tan A = sin A / cos A
Thus, sec A - tan A = (1 / cos A) - (sin A / cos A) = (1 - sin A) / cos A.

Rewrite the RHS in terms of sine and cosine:

The RHS is: 1 / (sec A - tan A)
= 1 / [(1 - sin A) / cos A]
= cos A / (1 - sin A).

Simplify the LHS:

LHS = (sin A - cos A + 1) / (sin A + cos A - 1).

Multiply numerator and denominator by the conjugate of the denominator, (sin A + cos A - 1):

Numerator: (sin A - cos A + 1)(sin A + cos A - 1)
= (sin A)^2 - (cos A)^2 + sin A - cos A + sin A + 1
= sin²A - cos²A + 2sin A - cos A + 1.

Denominator: (sin A + cos A - 1)²
= sin²A + cos²A - 2sin A - 2cos A + 1
= 1 - 2sin A - 2cos A + 1
= 2(1 - sin A - cos A).

So, LHS = (sin²A - cos²A + 2sin A - cos A + 1) / [2(1 - sin A - cos A)].

Factorize numerator if possible:
We observe symmetry at completion ratios

Last Activity: 11 Months ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments