Flag 10 grade maths> If alpha and beta are the zeros pf p(x)= ...
question mark

If alpha and beta are the zeros pf p(x)= 3x^2+5x-2 then form a quadratic polynomial whose zeros are 2alpha and 2beta

Riya , 7 Years ago
Grade 10
anser 8 Answers
Shreya D Nanda

Last Activity: 7 Years ago

Hi Riya,
If \alpha , and \beta are roots of a quadratic equation, say, f\left ( x \right )=ax^2+ bx + c, then, we have
\alpha +\beta = -b/a  and \alpha\beta = c/a
So according too your question,
p\left ( x \right ) =3x^2 +5x-2
\therefore \alpha +\beta =-5/3  and   \therefore \alpha\beta =-2/3
 
To form an another equation, where 2\alpha , 2\beta are the roots then,
2\alpha + 2\beta= 2\left ( \alpha +\beta \right ) =2*-5/3=-10/3,   say      -b`/a`=-10/3 \Rightarrow a`=3 , b`=10
[2\alpha][2\beta] =4\alpha \beta =4*-2/3= -8/3    , say    c``/a`=-8/3 \Rightarrow a`=3 , c`=-8
 
Therefore,  the new quadratic polynomial, with 2\alpha , 2\beta as roots, is
p`\left ( x \right ) =a`x^2+b`x +c`
\Rightarrow p`\left ( x \right ) =3x^2+10x -8`.
 
hope it is clear,,

sachin

Last Activity: 7 Years ago

 
If \alpha , and \beta are roots of a quadratic equation, say, f\left ( x \right )=ax^2+ bx + c, then, we have
\alpha +\beta = -b/a  and \alpha\beta = c/a
So according too your question,
p\left ( x \right ) =3x^2 +5x-2
\therefore \alpha +\beta =-5/3  and   \therefore \alpha\beta =-2/3
 
To form an another equation, where 2\alpha , 2\beta are the roots then,
2\alpha + 2\beta= 2\left ( \alpha +\beta \right ) =2*-5/3=-10/3,   say      -b`/a`=-10/3 \Rightarrow a`=3 , b`=10
[2\alpha][2\beta] =4\alpha \beta =4*-2/3= -8/3    , say    c``/a`=-8/3 \Rightarrow a`=3 , c`=-8
 
Therefore,  the new quadratic polynomial, with 2\alpha , 2\beta as roots, is
p`\left ( x \right ) =a`x^2+b`x +c`
\Rightarrow p`\left ( x \right ) =3x^2+10x -8`.

sachin

Last Activity: 7 Years ago

 
If \alpha , and \beta are roots of a quadratic equation, say, f\left ( x \right )=ax^2+ bx + c, then, we have
\alpha +\beta = -b/a  and \alpha\beta = c/a
So according too your question,
p\left ( x \right ) =3x^2 +5x-2
\therefore \alpha +\beta =-5/3  and   \therefore \alpha\beta =-2/3
 
To form an another equation, where 2\alpha , 2\beta are the roots then,
2\alpha + 2\beta= 2\left ( \alpha +\beta \right ) =2*-5/3=-10/3,   say      -b`/a`=-10/3 \Rightarrow a`=3 , b`=10
[2\alpha][2\beta] =4\alpha \beta =4*-2/3= -8/3    , say    c``/a`=-8/3 \Rightarrow a`=3 , c`=-8
 
Therefore,  the new quadratic polynomial, with 2\alpha , 2\beta as roots, is
p`\left ( x \right ) =a`x^2+b`x +c`.
\Rightarrow p`\left ( x \right ) =3x^2+10x -8`.

sachin

Last Activity: 7 Years ago

 
If \alpha , and \beta are roots of a quadratic equation, say, f\left ( x \right )=ax^2+ bx + c, then, we have
\alpha +\beta = -b/a  and \alpha\beta = c/a
So according too your question,
p\left ( x \right ) =3x^2 +5x-2
\therefore \alpha +\beta =-5/3  and   \therefore \alpha\beta =-2/3
 
To form an another equation, where 2\alpha , 2\beta are the roots then,
2\alpha + 2\beta= 2\left ( \alpha +\beta \right ) =2*-5/3=-10/3,   say      -b`/a`=-10/3 \Rightarrow a`=3 , b`=10
[2\alpha][2\beta] =4\alpha \beta =4*-2/3= -8/3    , say    c``/a`=-8/3 \Rightarrow a`=3 , c`=-8
 
Therefore,  the new quadratic polynomial, with 2\alpha , 2\beta as roots, is
p`\left ( x \right ) =a`x^2+b`x +c`
\Rightarrow p`\left ( x \right ) =3x^2+10x -8`…,.,.

sachin

Last Activity: 7 Years ago

 
If \alpha , and \beta are roots of a quadratic equation, say, f\left ( x \right )=ax^2+ bx + c, then, we have
\alpha +\beta = -b/a  and \alpha\beta = c/a
So according too your question,
p\left ( x \right ) =3x^2 +5x-2
\therefore \alpha +\beta =-5/3  and   \therefore \alpha\beta =-2/3
 
To form an another equation, where 2\alpha , 2\beta are the roots then,
2\alpha + 2\beta= 2\left ( \alpha +\beta \right ) =2*-5/3=-10/3,   say      -b`/a`=-10/3 \Rightarrow a`=3 , b`=10
[2\alpha][2\beta] =4\alpha \beta =4*-2/3= -8/3    , say    c``/a`=-8/3 \Rightarrow a`=3 , c`=-8
 
Therefore,  the new quadratic polynomial, with 2\alpha , 2\beta as roots, is
p`\left ( x \right ) =a`x^2+b`x +c`
\Rightarrow p`\left ( x \right ) =3x^2+10x -8`.//,/,/,/

sachin

Last Activity: 7 Years ago

 
If \alpha , and \beta are roots of a quadratic equation, say, f\left ( x \right )=ax^2+ bx + c, then, we have
\alpha +\beta = -b/a  and \alpha\beta = c/a
So according too your question,
p\left ( x \right ) =3x^2 +5x-2
\therefore \alpha +\beta =-5/3  and   \therefore \alpha\beta =-2/3
 
To form an another equation, where 2\alpha , 2\beta are the roots then,
2\alpha + 2\beta= 2\left ( \alpha +\beta \right ) =2*-5/3=-10/3,   say      -b`/a`=-10/3 \Rightarrow a`=3 , b`=10
[2\alpha][2\beta] =4\alpha \beta =4*-2/3= -8/3    , say    c``/a`=-8/3 \Rightarrow a`=3 , c`=-8
 
Therefore,  the new quadratic polynomial, with 2\alpha , 2\beta as roots, is
p`\left ( x \right ) =a`x^2+b`x +c`
\Rightarrow p`\left ( x \right ) =3x^2+10x -8`.././/././.....

soumya ranjan prusty

Last Activity: 7 Years ago

If \alpha , and \beta are roots of a quadratic equation, say, f\left ( x \right )=ax^2+ bx + c, then, we have
\alpha +\beta = -b/a  and \alpha\beta = c/a
So according too your question,
p\left ( x \right ) =3x^2 +5x-2
\therefore \alpha +\beta =-5/3  and   \therefore \alpha\beta =-2/3
 
To form an another equation, where 2\alpha , 2\beta are the roots then,
2\alpha + 2\beta= 2\left ( \alpha +\beta \right ) =2*-5/3=-10/3,   say      -b`/a`=-10/3 \Rightarrow a`=3 , b`=10
[2\alpha][2\beta] =4\alpha \beta =4*-2/3= -8/3    , say    c``/a`=-8/3 \Rightarrow a`=3 , c`=-8
 
Therefore,  the new quadratic polynomial, with 2\alpha , 2\beta as roots, is
p`\left ( x \right ) =a`x^2+b`x +c`.
\Rightarrow p`\left ( x \right ) =3x^2+10x -8`.

soumya ranjan prusty

Last Activity: 7 Years ago

If \alpha , and \beta are roots of a quadratic equation, say, f\left ( x \right )=ax^2+ bx + c, then, we have
\alpha +\beta = -b/a  and \alpha\beta = c/a
So according too your question,
p\left ( x \right ) =3x^2 +5x-2
\therefore \alpha +\beta =-5/3  and   \therefore \alpha\beta =-2/3
 
To form an another equation, where 2\alpha , 2\beta are the roots then,
2\alpha + 2\beta= 2\left ( \alpha +\beta \right ) =2*-5/3=-10/3,   say      -b`/a`=-10/3 \Rightarrow a`=3 , b`=10
[2\alpha][2\beta] =4\alpha \beta =4*-2/3= -8/3    , say    c``/a`=-8/3 \Rightarrow a`=3 , c`=-8
 
Therefore,  the new quadratic polynomial, with 2\alpha , 2\beta as roots, is
p`\left ( x \right ) =a`x^2+b`x +c`.
\Rightarrow p`\left ( x \right ) =3x^2+10x -8`. ok....................................

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free