Flag 10 grade maths> 2. On comparing the ratios a1/a2 , b1/b2 ...
question mark

2. On comparing the ratios a1/a2 , b1/b2 , c1/c2 find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident: (i) 5x – 4y + 8 = 0 7x + 6y – 9 = 0 (ii) 9x + 3y + 12 = 0 18x + 6y + 24 = 0 (iii) 6x – 3y + 10 = 0 2x – y + 9 = 0

Harshit Singh , 4 Years ago
Grade 12th pass
anser 1 Answers
Pawan Prajapati
Solutions: (i) Given expressions; 5x−4y+8 = 0 7x+6y−9 = 0 Comparing these equations with a1x+b1y+c1 = 0 And a2x+b2y+c2 = 0 We get, a1 = 5, b1 = -4, c1 = 8 a2 = 7, b2 = 6, c2 = -9 (a1/a2) = 5/7 (b1/b2) = -4/6 = -2/3 (c1/c2) = 8/-9 Since, (a1/a2) ≠ (b1/b2) So, the pairs of equations given in the question have a unique solution and the lines cross each other at exactly one point. (ii) Given expressions; 9x + 3y + 12 = 0 18x + 6y + 24 = 0 Comparing these equations with a1x+b1y+c1 = 0 And a2x+b2y+c2 = 0 We get, a1 = 9, b1 = 3, c1 = 12 a2 = 18, b2 = 6, c2 = 24 (a1/a2) = 9/18 = 1/2 (b1/b2) = 3/6 = 1/2 (c1/c2) = 12/24 = 1/2 Since (a1/a2) = (b1/b2) = (c1/c2) So, the pairs of equations given in the question have infinite possible solutions and the lines are coincident. (iii) Given Expressions; 6x – 3y + 10 = 0 2x – y + 9 = 0 Comparing these equations with a1x+b1y+c1 = 0 And a2x+b2y+c2 = 0 We get, a1 = 6, b1 = -3, c1 = 10 a2 = 2, b2 = -1, c2 = 9 (a1/a2) = 6/2 = 3/1 (b1/b2) = -3/-1 = 3/1 (c1/c2) = 10/9 Since (a1/a2) = (b1/b2) ≠ (c1/c2) So, the pairs of equations given in the question are parallel to each other and the lines never intersect each other at any point and there is no possible solution for the given pair of equations.
Last Activity: 4 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments