Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

11. Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.

11. Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.

Grade:12th pass

1 Answers

Pawan Prajapati
askIITians Faculty 8741 Points
3 months ago
Let the sides of the two squares be x m and y m. Therefore, their perimeter will be 4x and 4y respectively And area of the squares will be x2 and y2 respectively. Given, 4x – 4y = 24 x – y = 6 x = y + 6 Also, x2 + y2 = 468 ⇒ (6 + y2) + y2 = 468 ⇒ 36 + y2 + 12y + y2 = 468 ⇒ 2y2 + 12y + 432 = 0 ⇒ y2 + 6y – 216 = 0 ⇒ y2 + 18y – 12y – 216 = 0 ⇒ y(y +18) -12(y + 18) = 0 ⇒ (y + 18)(y – 12) = 0 ⇒ y = -18, 12 As we know, the side of a square cannot be negative. Hence, the sides of the squares are 12 m and (12 + 6) m = 18 m.

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free