Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the center.

10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the center.

Grade:12th pass

1 Answers

Pawan Prajapati
askIITians Faculty 8741 Points
3 months ago
First, draw a circle with centre O. Choose an external point P and draw two tangents PA and PB at point A and point B respectively. Now, join A and B to make AB in a way that it subtends ∠AOB at the center of the circle. The diagram is as follows: From the above diagram, it is seen that the line segments OA and PA are perpendicular. So, ∠OAP = 90° In a similar way, the line segments OB ⊥ PB and so, ∠OBP = 90° Now, in the quadrilateral OAPB, ∴∠APB+∠OAP +∠PBO +∠BOA = 360° (since the sum of all interior angles will be 360°) By putting the values we get, ∠APB + 180° + ∠BOA = 360° So, ∠APB + ∠BOA = 180° (Hence proved).

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free