Flag 10 grade maths> 1. Prove that √5 is irrational.
question mark

1. Prove that √5 is irrational.

Harshit Singh , 3 Years ago
Grade 12th pass
anser 1 Answers
Pawan Prajapati

Last Activity: 3 Years ago

Solutions: Let us assume, that √5 is rational number. i.e. √5 = x/y (where, x and y are co-primes) y√5= x Squaring both the sides, we get, (y√5)2 = x2 ⇒5y2 = x2……………………………….. (1) Thus, x2 is divisible by 5, so x is also divisible by 5. Let us say, x = 5k, for some value of k and substituting the value of x in equation (1), we get, 5y2 = (5k)2 ⇒y2 = 5k2 is divisible by 5 it means y is divisible by 5. Clearly, x and y are not co-primes. Thus, our assumption about √5 is rational is incorrect. Hence, √5 is an irrational number.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...