MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

Get extra R 800 off
USE CODE: Renew1

Relation between A.M., G.M. and H.M.

Let there are two numbers ‘a’ and ‘b’, a, b > 0

then AM = a+b/2

 GM =√ab

 HM =2ab/a+b

 ∴ AM × HM =a+b/2 × 2ab/a+b = ab = (√ab)2 = (GM)2

 Note that these means are in G.P.

 Hence AM.GM.HM follows the rules of G.P.

 i.e. G.M. =√A.M. × H.M.

 Now, let us see the difference between AM and GM

 AM – GM =a+b/2 – √ab

              =(√a2)+(√b)–2√a√b/2

 i.e. AM > GM

 Similarly,

 G.M. – H.M. = √ab –2ab/a+b

                  =√ab/a+b (√a – √b)2 > 0

 So. GM > HM

 Combining both results, we get

 AM > GM > HM                                                   …….. (12)

 All sequences of numbers cannot be put into A.P./G.P./H.P. Let us study these.

 Important Points:

r3 (r – 1)3 = 3 r2 – 3r + 1

r = 1 : 13 – 0 = 3 . 12 – 3 . 1 + 1

r = 2 : 23 – 13 = 3 . 22 – 3 . 2 + 1

r = 3 : 33 – 23 = 3 . 32 – 3 . 3 + 1

r = n : n3 – (n–1)3 = 3.(n2) – 3(n) + 1

Adding

n3 = 3 (12 + 22 +…+ n2) –3 (1 + 2 + 3 +…+ n) + (1 + 1 +…+ n times)

n3 = 3 Σnr=1 r2 – 3 (n(n+1))/2 + n

⇒ 3 Σnr=1 r2 = n3 + 3n(n+1)/2 – n

        = n/2 (2n2 + 3n + 1)

 Σnr=1 r2 = n(n+1)(2n+1)/6

To read more, Buy study materials of Sequences and Series comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.

  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 3,000 off
USE CODE: MOB20