MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

Get extra R 1,600 off
USE CODE: askschfd09

Area Enclosed Between the Curves

Area between curves y = Φ(x) and y = Ψ(x) and ordinates x = x1 and x = x2       

                                  img7   

(i) To determine the area between curves, first find out the points of intersection of the two curves. (See figure)
                                    img8 
(ii) If in the domain common to both (i.e. the domain given by the points of intersection) the curves lie above x-axis, then area is
                       img16 
Note: If however one part of one or both the curve lies below x-axis, then the individual integral must be evaluated according to the case considered in the last topic.

3.           Area between curve y = f(x) and y-axis. 
To obtain the area between the curve and the y-axis, the function must be written in y. (see figure A and B) i.e. y = f(x) must be inverted to x = g(y) (where g(x) = f–1 (x)) and the integral to be evaluated is ∫y1y2x dy or ∫y1y2g(y) dy.

                   img9
         Similarly the area bounded between the y-axis & the curves y = f(x) and y = g(x) can be determined. In general, to find the area of the region one must draw the curve and locate the region. The limits and sign of different definite integral are determined accordingly.

Illustration: 
            Suppose we have to calculate the area bounded by y2 = 4x and 2x = y. 
Solution: 
            First we should calculate the points of intersection. 
                       4x2 – 4x = 0              ⇒ x = 0, x = 1 
                                 img10
           The shaded portion gives the required area. 
           This area is given by 
                img17
Illustration: 
         Find the area bounded by y = x |sin x| and the x-axis between x = 0, x = 2Π. Solution: 
                          img18 
                                 img11
    Hence the required area
                     img19

Illustration: 
     Find the area bounded by the curve |x| + y = 1 and the x-axis. 
Solution: 
    The given curve is |x| + y = 1 …… (1)
     i.e. x + y = 1, when x > 0
    and –x + y = 1, when x < 0.
                            img12
     The required area 
     = area (CAOC) + area (OABO) 
    img20 
    = 1 sq. unit. 
Note:    Obviously, y = 1 – [x] is an even function. Hence graph of y = 1 – |x| is symmetrical about the y-axis. Thus the required area = 2 ∫01(1-x)dx. 

Illustration: 
       
Calculate the area bounded by the curve y = x(3 – x)2, the x-axis and the ordinates of the maximum and minimum points of the curve. 
Solution: 
       Since y = x(3 – x)2. Now for points of maxima or minima, we have dy/dx = 0 
       ⇒ (3 – x)2 – 2x(3 – x) = 0 
       ⇒ (3 – x)(3 – x – 2x) = 0          ∴ x = 1, 3 
                             img13
img24
img21
Illustration: 
       Let f be a real valued function satisfying f(x/y) = f(x) – f(y) andimg27  then find the area bounded by y = f(x), y-axis and line y = 3.
Solution:
         f(x/y) = f(x) – f(y) 
         Putting x = y = 1, we get f(1) = 0
      img25
    Putting x = 1, we get c = 0 
    f(x) = 3 lnx 
   Hence required area = ∫3 e y/3 dy = 3e sq. units. 

Illustration: 
       Find the area between curves y = exlnx and y = lnx/ex. 
Solution: 
       The two curves intersect where
  img26
      ⇒ x = 1/e or x = 1 (lnx is not defined for x = –1/e) 
      At x = 1/e or ex = 1 
      lnx = –1, y = –1
                               img14
      ⇒ (1/e, –1) is one point of intersection and at x = 1, ln 1 = 0, y = 0 
      ⇒ (1, 0) is the other common point of the curves. 
      The required area = ∫1/e1  (y1-y2) dx
    img22
Illustration:
    Let f(x) = minimum (x + 1, √(1-x)) for all x < 1. Find the area bounded by y = f(x) and the x-axis. 
Solution: 
      Required area = Area ABCA
             img23
                         img15

To read more, Buy study materials of Application of Integration comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.

  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 15,000 off
USE CODE: askschfd09