MY CART (5)

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping

X

“Hurray! You have won the gift voucher. Redeem your points now."

X

L’ Hospital’s Rule

We have dealt with problems which had indeterminate from either 0/0 or ∞/∞ .

The other indeterminate forms are ∞-∞,0,∞,00,∞0,1

We state below a rule, called L' Hospital's Rule, meant for problems on limit of the form 0/0 or ∞/∞  .

Let f(x) and g(x) be functions differentiable in the neighbourhood of the point a, except may be at the point a itself. If  limx→a f(x) = 0 = limx→a g(x) or limx→af(x)= ∞ = ∞  g(x), then limx→a f(x)/g(x) = limx→a f' (x)/g(x) = limx→a f' (x)/g'(x)    provided that the limit on the right either exists as a finite number or is ± ∞ .

Illustration:

        Evaluate  limx→1 (1-x+lnx)/(1+cos π x )

Solution:

  limx→1 (1-x+lnx)/(1+cos π x ) (of the form 0/0)

        = limx→1 (1-1/x)/(-π sin π  x) (still of the form 0/0)

       =  limx→1 (x-1)/(πx sin π x) (algebraic simplification)

       =  limx→1 1/(πx sin π x + π2 x cos π x ) (L' Hospital's rule again)

       = - 1/π2

Illustration:     

Evaluate limx→y  (xy-yx)/(xx-yy )

Solution:            

          limx→y  (xy-yx)/(xx-yy );   [0/0] = limx→y (yxy-1 - yx log y)/(xx log(ex) )

                                                     = (1-log y)/log(ey)
 

To know more about the study material of engineering and medical exams, please fill up the form given below:

We promise that your information will be our little secret. To know more please see our Privacy Policy
We promise that your information will be our little secret. To know more please see our Privacy Policy

OR

Signing up with Facebook allows you to connect with friends and classmates already using askIItians. It’s an easier way as well. “Relax, we won’t flood your facebook news feed!”