Guest

Some Important Results

 

1.     Differentiating (1+x)n = C0 + C1x + C2x2 +...+ Cnxn of both sides we have,

        n(1 + x)n-1 = C1 + 2C2x + 3C3x2 +...+ nCnxn-1.                   ... (E)

        Put x = 1 in (E) so that n2n+1 = C1 + 2C2 + 3C3 + ...+ nCn.

        Put x = -1 in (E) so that 0 = C1 - 2C2 +...+ (-1)n-1 nCn.

        Differentiating (E) again and again we will have different results.

2.     Integrating (1 + x)n, we have,

        ((1+x)n+1)/(n+1) + C = C0x +  C1x2/2  + C2x3/3 +.....+Cnxn+1/(n+1)        (where C is a constant)

        For x = 0, we get C = -1/(n+1) .

        Therefore ((1+x)n+1 - 1)/(n+1)  = C0x +  C1x2/2  + C2x3/3 +.....+Cnxn+1/(n+1)  ..... (F)

        Put x = 1 in (F) and get

         (2n+1 - 1)/n+1= C0 + C1/2 +...Cn/n+1 .

        Put x = -1 in (F) and get, 1/n+1 = C0 - C1/2 + C2/3 -  ......

        Put x = 2 in (F) and get, (3n+1-1)/n+1 = 2 C0 + 22/2 C1 + 22/3 C2 +...+ 2n+1/n+1  = Cn.

Problems Related to Series of Binomial Coefficients in Which Each Term is a Product of an Integer and a Binomial Coefficient, i.e. In the Form k.nCr. 

Illustration:

       If (1+x)n =resultxr then prove that C1 + 2C2 + 3C3 +...+ nCn = n2n-1.

Solution:

          Method (i) : rth term of the given series

        rth term of the given series, tr = nCr

        => tr = r × n/r × n-1Cr-1 = n × n-1Cr-1          (because nCr =n/r .n-1Cr-1)

        Sum of the series = equation4

        Put x = 1 in the expansion of (1 + x)n-1, so that

        (n-1C0 + n-1C1 +...+  n-1Cn-1) = 2n-1

        => equation4 = n.2n-1.

          Method (ii) : By Calculus

        We have (1 + x)n = C0 + C1x + C2x2 +...+ Cnxn.                       ... (1)

        Differentiating (1) w.r.t. x, we get

        n(1 + x)n-1 = C1 + 2C2x + 3C3 x2 +...+ n Cnxn-1.                     ... (2)

        Putting x = 1 in (2), we have, n 2n-1 = C1 + 2C2 +....+ nCn.         ... (3)

Illustration:

If (1+ x)n =result  xr then prove that C0 + 2.C1 + 3.C2+...+(n+1)Cn=2n-1(n+2).

Solution:

Method (i): rth term of the given series

        rth term of the given series

        tr = nCr-1 = [(r-1) + 1]. nCr-1

        = (r-1) nCr-1 + nCr-1 = n. n-1Cr-2 + nCr-1 (because nCr-1 =n/(r-1) . n-1Cr-2)

        Sum of the series = equation5

        = n[n-1C0 + n-1C1 +...+ n-1Cn-1]+[nC0 + nC1 +...+ nCn] = n.2n-1 + 2n
        = 2n-1 (n+2).

Method (ii) by Calculus.

        We have (1 + x)n = C0 + C1x + C2x2 +...+ Cnxn.                        ... (1)

        Multiplying (1) with x, we get

        x(1+x)n = C0x + C1x2 + C2x3 +...+ Cnxn+1.                                ... (2)

        Differentiating (2) w.r.t. x, we have

        (1 + x)n + n(1 + x)n-1 x = C0x + 2C1x2 +...+ (n+1)Cnxn                ... (3)

        Putting x = 1 in (3), we get

        2n + n.2n-1 = C0 + 2C1 + 3C2 +...+ (n+1)Cn

        => C0 + 2C1 + 3C2 +...+ (n+1)Cn = 2n-1 (n+2). 

Problems Related to Series of Binomial Coefficient in Which Each Term is Binomial Coefficient divided by an Integer, i.e. in the Form of nCr/k.

Illustration:

        If (1+x)n = equation6.jpg

Solution:

Method (i) : rth term of the given series

       equation6

Method (ii): By Calculus

       (1+x)n = C0 + C1x + C2x2 +...+ Cnxn                                        ... (1)

       Integrating both the sides of (1) w.r.t. x between the limits 0 to x, we get

      equation8      ... (2)

      Substituting x = 1 in (2), we get 2n+1/n+1 = C0 + c1/2 + c2/3 +.....+ cn/n+1.

Illustration:

       If (1+x)n  =result xr ,show thatequation13

Method I : rth term of the given series Tr = equation14

       new-equation

Method II : (By Calculus)

       (1 + x)n = C0 + C1x + C2x2 +...+ Cnxn

        => x(1+x)n = C0x + C1x2 + C2x3 +...+ Cnxn+1                      ... (1)

        Integrating both the sides of (1) with respect to x

       equation10

        Put x = 0, => k = 1/((n+1)(n+2))

       equation11

        Put x = 1,

        equation12.

Problem Related to Series of Binomial Coefficients in Which Each Term is a Product of two Binomial Coefficients.

(a) If sum of lower suffices of binomial expansion in each term is the same

        i.e. nC0 nCn + nC1 nCn-1 + nCn-2 +...+ nCn nC0

        i.e. 0 + n = 1 + (n-1) = 2 + (n-2) = n + 0.

Then the series represents the coefficients of xn in the multiplication of the  following two series

       (1+x)n = C0 + C1x + C2x2 +...+ Cnxn

       and (1+x)n = C0 + C1x + C2x2 +...+ Cnxn.

Illustration:

       Prove that C0Cr + C1Cr+1 + C2Cr+2 +...+ Cn-r Cn = (2n)!/((n-r)!(n+r)!)

Solution:

        We have,

        C0 + C1x + C2x2 + ... + Cnxn = (1+x)n                                      ... (1)

        Also C0xn + C2xn-2 +...+ Cn = (x+1)n                                        ... (2)

        Multiplying (1) and (2), we get

        (C0 + C1x2 +...+ Cnxn)(C0xn + C1xn-2 + C2xn-2 +...+ Cn) = (1+x)2n ... (3)

        Equating coefficient of xn-r from both sides of (3), we get

        C0Cr + C1Cr+1 + C2Cr+2 +...+ Cn-rCn = 2nCn-r = (2n)/((n-r)!(n+r)!) .

Illustration:

        Prove that Co2 + C12 +...+ Cn2 = (2n)!/n!n! .

Solution:

        Since

        (1 + x)n = C0 + C1x + C2x2 +...+ Cnxn,                                     ... (1)

        (x + 1)n = C0xn + C1xn-2 +...+ Cn,                                            ... (2)

        (C0 + C1x + C2x2 +...+ Cnxn)(C0xn + C1xn-1 + C2xn-2 +...+ Cn)=(1+x)2n.

        Equating coefficient of xn, we get

        C02 + C12 + C22 +...+ Cn2 = 2nCn = (2n)!/n!n! .

Illustration:

        If (1+x)n = summation , then prove that

        mCr nC0 + mCr-1 nC1 + mCr-2 nC2 +...+ mC1 nCr-1 + mC0 nCr = m+nCr

        where m, n, r are positive integers and r < m and r < n.

Solution:

        (1+x)n = nC0 + nC1x + nC2x2 +...+ nCrxr +...+ nCnxn                      ... (1)

        and also

        (1+x)m = mC0 + mC1x + mC2x2 +...+ mCrxr +...+ mCmxm                ... (2)

        Multiplying (1) and (2), we get

        (nC0 + nC1x + nC2x2 +...+ nCrxr +...+ nCnxn)x

        (mC0 + mC1x + mC2x2 +...+ mCrxr +...+ mCmxm) = (1+x)m+n

        = m+nC0 + m+2C1x + m+nC2x2 +...+ m+nCrxr +...+ m+nCm+nxm+n

        Equating the coefficient of xr, we get

        mCr nC0 + mCr-1 nC1 + mCr-2 nC2 +...+ mC1 nCr-1 + mC0 nCr = m+nCr

(b)    If one series has constant lower suffices and other has varying lower suffices

Illustration:

        Prove that nC0.2nCn - nC12n-2Cn + nC2/2n-4Cn -...= 2n.

Solution:

        nC0.2nCn - nC12n-2Cn + nC2/2n-4Cn -...

        = coefficient of xn in[nC0(1+x)2n - nC1(1+x)2n-2+nC2(1+x)2n-4 - ...]

        = coefficient of xn in

        [nC0((1+x)2)n - nC1((1+x)2)n-1 + nC2((1+x)2)n-2 - ...]

        = coefficient of xn in [(1+x)2 - 1]n

        = coefficient of xn in (2x+x2)n = co-efficient of xn in xn (2+x)n = 2n.

At askIITians we provide you free study material on Set Theory and Functions and you get all the professional help needed to get through IIT JEE and AIEEE easily. AskIITians also provides live online IIT JEE preparation and coaching where you can attend our live online classes from your home!


TOP Your EXAMS!

Upto 50% Scholarship on Live Classes

Course Features

  • Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution

r