Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
to prove
(r=1 to r=7)∑tan2 rπ/16=35```
7 years ago

23 Points
```
ANS:
Let,
a=∏/16
tan7a=cota             since (∏/2-7∏/16=∏/16)
similarly we get,
tan6a=cot2a
tan5a=cot3a
and 4a =∏/4  tan4a=1
therefore given expression reduces to,
tan^2a+cot^2a+tan^2(2a)+cot^2(2a)+tan^2(3a)+cot^2(3a)+1

tan^2a+cot^2a=
=sin^4a+cos^4a/sin^2acos^2a
=((sin^2a+cos^2a)^2 – 2sin^2acos^2a)/ sin^2acos^2a
=(1– 2sin^2acos^2a) / sin^2acos^2a
=1/ sin^2acos^2a -2
=(4/4 sin^2acos^2a )-2
=4/sin^2(2a) -2
In the same way simplifying other sums we get,
4(1/sin^2(2a)+1/sin^2(4a)+1/sin^2(6a))-5
1/sin^2(4a)=2
=4(1/sin^2(2a)+1/sin^2(6a))+3
=8(1/(1-cos4a)+1/(1-cos12a))+3
[4a=∏/4  and  12a =3∏/4]
this gives
=32+3
=35

```
7 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Trigonometry

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details