MY CART (5)

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping

X

“Hurray! You have won the gift voucher. Redeem your points now."

X

                   

If 3sinx + 4cosx = 5, then 4sinx - 3cosx =....???



  1. 0

  2. -5

  3. 1/5

  4. 5


plz explain me in detail... how to do questions like this... 

4 years ago

Share

Answers : (12)

                                        

ANS    3sinx+4cosx=5


     => 3/5 sinx +4/5 cosx = 1


     let cosA=3/5   => sinA=4/5


     =>  cosAsinx + sinAcosx = 1


     =>  sin(x+A) = 1


Now,


       4sinx - 3cosx


  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]


  =   5(sinAsinx - cosAcosx)


  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0


 


TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)


            this method is useful  in many questions 


 


 


 PLEASE       APPROVE       MY       ANSWER       IF       YOU       LIKE       IT


 

4 years ago
                                        

3sinx+4cosx=5


Squaring on both sides.


(3sinx+4cosx) 2 = 25


9sin2x +16 cos2x+24sinxcosx=25


9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25


9-9 cos2x+16-16 sin2x+24sinxcosx=25


25-9 cos2x-16 sin2x+24sinxcosx=25


9 cos2x+16 sin2x-24sinxcosx=0


(3cosx-4sinx) 2 = 0


4sinx-3cosx=0


 

2 years ago
                                        3sinx+4cosx=5Squaring on both sides.(3sinx+4cosx) 2 = 259sin2x +16 cos2x+24sinxcosx=259(1- cos2x)+16(1- sin2x)+ 24sinxcosx=259-9 cos2x+16-16 sin2x+24sinxcosx=2525-9 cos2x-16 sin2x+24sinxcosx=259 cos2x+16 sin2x-24sinxcosx=0(3cosx-4sinx) 2 = 04sinx-3cosx=0
                                        
2 months ago
                                        
3sinx+4cosx=5.
Do sqaring on both sides.
The equation will be as :- 9sin2x+16cos2x+24sinx.cosx=25.
Let the above equation be no.1
Think that the value of 4sinx-3cosx=p.
Do squaring on both sides.
The eqation will be as :- 16sin2x+9cos2x-24sinx.cosx=p2.
Let the above equation be no.2
Add equations no.1 and no.2
You will get as :- 25sin2x+25cos2x=25+p2
25(sin2x+cos2x)=25+p2
25=25+p2                                   (because sin2x+cos2x=1)
p2=0
p=0.
4sinx-3cosx=0.
Therefore answer is 0.
 
 
PLEASE  APPROVE  MY  ANSWER  IF IT IS RIGHT
2 months ago
                                        
 

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

2 months ago
                                        

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

2 months ago
                                        
 

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

 
one month ago
                                        
 

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

 
one month ago
                                        
 

ANS    3sinx+4cosx=5

 

     => 3/5 sinx +4/5 cosx = 1

 

     let cosA=3/5   => sinA=4/5

 

     =>  cosAsinx + sinAcosx = 1

 

     =>  sin(x+A) = 1

 

Now,

 

       4sinx - 3cosx

 

  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]

 

  =   5(sinAsinx - cosAcosx)

 

  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0

 

 

 

TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)

 

            this method is useful  in many questions 

 

 

 
 
one month ago
                                        
 

ANS    3sinx+4cosx=5

 

     => 3/5 sinx +4/5 cosx = 1

 

     let cosA=3/5   => sinA=4/5

 

     =>  cosAsinx + sinAcosx = 1

 

     =>  sin(x+A) = 1

 

Now,

 

       4sinx - 3cosx

 

  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]

 

  =   5(sinAsinx - cosAcosx)

 

  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0

 

 

 

TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)

 

            this method is useful  in many questions 

 

 

 
 
one month ago
                                        
 

ANS    3sinx+4cosx=5

 

     => 3/5 sinx +4/5 cosx = 1

 

     let cosA=3/5   => sinA=4/5

 

     =>  cosAsinx + sinAcosx = 1

 

     =>  sin(x+A) = 1

 

Now,

 

       4sinx - 3cosx

 

  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]

 

  =   5(sinAsinx - cosAcosx)

 

  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0

 

 

 

TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)

 

            this method is useful  in many questions 

 

 

 
 
one month ago
                                        
HINT:  (3sinx +4cosx)^2+(3cosx-4sinx)^2=(3^2+4^2)(cos^2x+sin^2x)
one month ago

Post Your Answer

More Questions On Trigonometry

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!!
Click Here for details
min value valvue of 3^(sin^6 x) + 3^(cos^6 x)
 
 
Hint: Apply the condition that for two numbers, A.M. (Arithmetic mean) is always greater then or equal to their G.M. (Geometric Mean). Thanks.
  img
Vijay Mukti 11 days ago
 
2*3 1/4
 
nikesh 10 days ago
show that √2+√2+√2=2cos8θ.
 
 
Not possible as maximum value of cos is 1. Thanks
  img
Vijay Mukti 22 days ago
 
My Pleasure.
  img
Vijay Mukti 21 days ago
 
maximum value of cos of something is 1 ,hence no solutions
 
Prajwal Kavad 21 days ago
solution
 
 
Replace cot by cos in denominator of RHS then try to simplyfy it.
  img
Vijay Mukti 19 days ago
intervals on number line show: f(x)=x^2(x+1)/(x-2) f(x)>0 f(x)
 
 
Questions seems to be incomplete.
  img
Vijay Mukti 5 days ago
Pl provide soln to the attached image!!
 
 
a n = Limit x 2 *(f(a n-1 /x) – f(0)) 2 , a n /a n-1 2 = Limit [ [ f(a n-1 /x) – f(0) ]/[ a n-1 /x – 0] ] 2 a n /x will be tendind to 0 as x tends to inf. hence RHS = f’(0) 2 So, an/an-1^2...
 
Akshay 24 days ago
hi how to get iit is any more coching is needed for iit other than cbse 11 and 12
 
 
Yes definetely, the proper guidance which is being provided at the institute is necessary for clearing the IIT.
  img
Vijay Mukti 12 days ago
View all Questions »