MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

Get extra R 150 off
USE CODE: EXAM25

				   

If 3sinx + 4cosx = 5, then 4sinx - 3cosx =....???



  1. 0

  2. -5

  3. 1/5

  4. 5


plz explain me in detail... how to do questions like this... 

4 years ago

Share

Answers : (12)

										

ANS    3sinx+4cosx=5


     => 3/5 sinx +4/5 cosx = 1


     let cosA=3/5   => sinA=4/5


     =>  cosAsinx + sinAcosx = 1


     =>  sin(x+A) = 1


Now,


       4sinx - 3cosx


  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]


  =   5(sinAsinx - cosAcosx)


  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0


 


TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)


            this method is useful  in many questions 


 


 


 PLEASE       APPROVE       MY       ANSWER       IF       YOU       LIKE       IT


 

4 years ago
										

3sinx+4cosx=5


Squaring on both sides.


(3sinx+4cosx) 2 = 25


9sin2x +16 cos2x+24sinxcosx=25


9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25


9-9 cos2x+16-16 sin2x+24sinxcosx=25


25-9 cos2x-16 sin2x+24sinxcosx=25


9 cos2x+16 sin2x-24sinxcosx=0


(3cosx-4sinx) 2 = 0


4sinx-3cosx=0


 

3 years ago
										3sinx+4cosx=5Squaring on both sides.(3sinx+4cosx) 2 = 259sin2x +16 cos2x+24sinxcosx=259(1- cos2x)+16(1- sin2x)+ 24sinxcosx=259-9 cos2x+16-16 sin2x+24sinxcosx=2525-9 cos2x-16 sin2x+24sinxcosx=259 cos2x+16 sin2x-24sinxcosx=0(3cosx-4sinx) 2 = 04sinx-3cosx=0
										
8 months ago
										
3sinx+4cosx=5.
Do sqaring on both sides.
The equation will be as :- 9sin2x+16cos2x+24sinx.cosx=25.
Let the above equation be no.1
Think that the value of 4sinx-3cosx=p.
Do squaring on both sides.
The eqation will be as :- 16sin2x+9cos2x-24sinx.cosx=p2.
Let the above equation be no.2
Add equations no.1 and no.2
You will get as :- 25sin2x+25cos2x=25+p2
25(sin2x+cos2x)=25+p2
25=25+p2                                   (because sin2x+cos2x=1)
p2=0
p=0.
4sinx-3cosx=0.
Therefore answer is 0.
 
 
PLEASE  APPROVE  MY  ANSWER  IF IT IS RIGHT
8 months ago
										
 

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

8 months ago
										

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

8 months ago
										
 

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

 
7 months ago
										
 

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

 
7 months ago
										
 

ANS    3sinx+4cosx=5

 

     => 3/5 sinx +4/5 cosx = 1

 

     let cosA=3/5   => sinA=4/5

 

     =>  cosAsinx + sinAcosx = 1

 

     =>  sin(x+A) = 1

 

Now,

 

       4sinx - 3cosx

 

  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]

 

  =   5(sinAsinx - cosAcosx)

 

  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0

 

 

 

TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)

 

            this method is useful  in many questions 

 

 

 
 
7 months ago
										
 

ANS    3sinx+4cosx=5

 

     => 3/5 sinx +4/5 cosx = 1

 

     let cosA=3/5   => sinA=4/5

 

     =>  cosAsinx + sinAcosx = 1

 

     =>  sin(x+A) = 1

 

Now,

 

       4sinx - 3cosx

 

  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]

 

  =   5(sinAsinx - cosAcosx)

 

  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0

 

 

 

TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)

 

            this method is useful  in many questions 

 

 

 
 
7 months ago
										
 

ANS    3sinx+4cosx=5

 

     => 3/5 sinx +4/5 cosx = 1

 

     let cosA=3/5   => sinA=4/5

 

     =>  cosAsinx + sinAcosx = 1

 

     =>  sin(x+A) = 1

 

Now,

 

       4sinx - 3cosx

 

  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]

 

  =   5(sinAsinx - cosAcosx)

 

  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0

 

 

 

TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)

 

            this method is useful  in many questions 

 

 

 
 
7 months ago
										
HINT:  (3sinx +4cosx)^2+(3cosx-4sinx)^2=(3^2+4^2)(cos^2x+sin^2x)
7 months ago

Post Your Answer

WHAT IS TRIGONOMETRY
 
 
Trigonometry (from Greek trigōnon, "triangle" and metron, "measure") is a branch of mathematics that studies relationships involving lengths and angles of triangles. The field emerged in...
 
SAI SARDAR 4 months ago
 
Trigonometry (from Greek trigōnon, "triangle" and metron, "measure") is a branch of mathematics that studies relationships involving lengths and angles of triangles.
 
SHANMUKESHWAR 5 months ago
 
Trigonometry (from Greek trigōnon, "triangle" and metron, "measure") is a branch of mathematics that studies relationships involving lengths and angles of triangles.
 
PAVAN 5 months ago
If cotA+cotB=a, tanA+ tanB=b a+b=c then show (a-b) tan c= ab
 
 
 
Raghu Vamshi Hemadri 5 months ago
 
 
Lab Bhattacharjee 5 months ago
(1+sint ) ( 1 + cost ) = 5 / 4 Find the value of ( 1 - sint ) ( 1 - cost ).
 
 
First not
 
mycroft holmes 4 months ago
 
My solution disappeared!! Hint: sin t cos t = ½ [(sin t + cost) 2 -1]. So use substitution sin t +cos t = y, and solve for y. Required expression is 5/4 – 2y
 
mycroft holmes 4 months ago
How do we find the vertices of the triangle if its equation of a line and opposite vertex is given.?
 
 
Dear Student, You can easily find the vertices from the given equation of lines. Solve the two equation to get the intersecting point on them. This intersecting points will be the vertices...
  img
Vijay Mukati 5 months ago
Given planes P1: cy+bz=x P2 : az+cx =y P3: bx+ay=z P1, P2 and P3 pass through one line, if (A) a 2 +b 2 +c 2 =ab+bc+ca (B) a 2 +b 2 +c 2 +2abc=1 (C)a 2 +b 2 +c 2 =1 (D) a 2 +b 2 +c 2...
 
 
The answer to your question is B) a 2 +b 2 +c 2 +2abc=1. I’ve got it using a bit long method so try to solve it with any better and easier one. I used the concept of family of Planes.What I ...
 
Yash Jain one year ago
y = cos4x.cos2x find dy/dx
 
 
Ans. -((cos4x sin2x)/2+(cos2x sin4x)/4).
  img
Vijay Mukati 6 months ago
View all Questions »

  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 3,750 off
USE CODE: EXAM25

Get extra R 150 off
USE CODE: EXAM25

More Questions On Trigonometry

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!!
Click Here for details