MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

Get extra R 120 off
USE CODE: CART20

				   

If 3sinx + 4cosx = 5, then 4sinx - 3cosx =....???



  1. 0

  2. -5

  3. 1/5

  4. 5


plz explain me in detail... how to do questions like this... 

4 years ago

Share

Answers : (6)

										

ANS    3sinx+4cosx=5


     => 3/5 sinx +4/5 cosx = 1


     let cosA=3/5   => sinA=4/5


     =>  cosAsinx + sinAcosx = 1


     =>  sin(x+A) = 1


Now,


       4sinx - 3cosx


  =   5(4/5sinx - 3/5 cosx)     [multipying numerator and denominator by 5]


  =   5(sinAsinx - cosAcosx)


  =   -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0          Ans 0


 


TRICK: if asinx+bcosx is given then multiply numerator and denominator by root(a^2 +b^2)


            this method is useful  in many questions 


 


 


 PLEASE       APPROVE       MY       ANSWER       IF       YOU       LIKE       IT


 

4 years ago
										

3sinx+4cosx=5


Squaring on both sides.


(3sinx+4cosx) 2 = 25


9sin2x +16 cos2x+24sinxcosx=25


9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25


9-9 cos2x+16-16 sin2x+24sinxcosx=25


25-9 cos2x-16 sin2x+24sinxcosx=25


9 cos2x+16 sin2x-24sinxcosx=0


(3cosx-4sinx) 2 = 0


4sinx-3cosx=0


 

3 years ago
										
3sinx+4cosx=5.
Do sqaring on both sides.
The equation will be as :- 9sin2x+16cos2x+24sinx.cosx=25.
Let the above equation be no.1
Think that the value of 4sinx-3cosx=p.
Do squaring on both sides.
The eqation will be as :- 16sin2x+9cos2x-24sinx.cosx=p2.
Let the above equation be no.2
Add equations no.1 and no.2
You will get as :- 25sin2x+25cos2x=25+p2
25(sin2x+cos2x)=25+p2
25=25+p2                                   (because sin2x+cos2x=1)
p2=0
p=0.
4sinx-3cosx=0.
Therefore answer is 0.
 
 
PLEASE  APPROVE  MY  ANSWER  IF IT IS RIGHT
one year ago
										
 

3sinx+4cosx=5

 

Squaring on both sides.

 

(3sinx+4cosx) 2 = 25

 

9sin2x +16 cos2x+24sinxcosx=25

 

9(1- cos2x)+16(1- sin2x)+ 24sinxcosx=25

 

9-9 cos2x+16-16 sin2x+24sinxcosx=25

 

25-9 cos2x-16 sin2x+24sinxcosx=25

 

9 cos2x+16 sin2x-24sinxcosx=0

 

(3cosx-4sinx) 2 = 0

 

4sinx-3cosx=0

one year ago
										
HINT:  (3sinx +4cosx)^2+(3cosx-4sinx)^2=(3^2+4^2)(cos^2x+sin^2x)
11 months ago
										
easiest method....given 3sinx+4cosx=5..then find 4sinx-3cosx=?
a=3  b=4  c=5...let our ans to be k
a^2+b^2=c^2+k^2
after putting values nd solving we get...k=0...easy method...
 
 
25 days ago

Post Your Answer

Prove that :- 2cos(45°/4) = √2+√2+√2
 
 
0"...
 
Lab Bhattacharjee 8 months ago
 
0"...
 
Raghu Vamshi Hemadri 8 months ago
prove that , sin(x) sin(2x) sin(3x)
 
 
well, question is : prove that , sin(x) sin(2x) sin(3x) something wrong here, some bug or something , question statement got truncated when i posted (both the times – i posted twice)
 
inder kumar 10 months ago
 
what we have to prove?give the right hand equation or value.so give the right hand value or equation as early as possible i will try to give the answer
 
SHAIK HAFEEZUL KAREEM 2 months ago
 
prove sin(x)sin(2x)sin(3x)is less than 9/16 is question without using maxima/minima/calculus
 
inder kumar 10 months ago
sin90=
 
 
Sin90=1.
 
PRAPULPODISHETTI 8 months ago
 
1
 
RAJU 8 months ago
 
1
 
OUTPASS 8 months ago
Discuss continuity of f(x)=(x-a)sin1/(x-a) when x#a0 when x=a. AT x=a
 
 
at exact x=a the function is not defined. but the left hand limit (LHL) at x=a gives a very small negative number and RHL give a very small positive number. Hence the function is...
 
Shahzeb Rizvi 5 days ago
how was calculus invented? rate of change etc...
 
 
Around the 1670’s, two great men discovered and developed calculus independently from each other. Sir Isaac Newton of England, and Gottfried Wilhelm Leibniz of Germany, both did quite...
  img
Harsh Patodia 3 months ago
number of surjections formula
 
 
It is quite easy to calculate the total number of functions from a setXwithmelements to a setYwithnelements (nm), and also the total number of injective functions (nm−−, denoting...
  img
Charchit Tailong 10 months ago
 
one can get a formula for the number of surjections using inclusion-exclusion, applied to the setsX1,...,Xm, where for eachithe setXiis defined to be the set of functions that never take the...
  img
Ashutosh Sharma 10 months ago
View all Questions »

  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 6,000 off
USE CODE: int40

Get extra R 120 off
USE CODE: CART20

More Questions On Trigonometry

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!!
Click Here for details