Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```        What is the value of :

cot 76 cot 44 + cot 44 cot 16 - cot 76 cot16```
7 years ago

SAGAR SINGH - IIT DELHI
879 Points
```										Dear karthik,
E = cot(76)cot(44) + cot(44)cot(16) - cot(76)cot(16)   First, use the formula, cot(A) = tan(90 - A). Then we have :  E = tan(14)tan(46) + tan(46)tan(74) - tan(14)tan(74)  Rearrange this so the larger numbers are first : E = tan(46)tan(14) + tan(74)tan(46) - tan(74)tan(14)  Now we need these two formulae :  tan(A + B) = [tan(A) + tan(B)]/[1 - tan(A)tan(B)] which rearranges to : tan(A)tan(B) = 1 - [tan(A) + tan(B)]/tan(A + B) .......... (1) and tan(A - B) = [tan(A) - tan(B)] / [1 + tan(A)tan(B)] which rearranges to : tan(A)tan(B) = [tan(A) - tan(B)]/tan(A - B) - 1 ............ (2)  For the 1st expression of E, use (1) : tan(46)tan(14) = 1 - [tan(46) + tan(14)]/tan(60) But tan(60) = √3, so, tan(46)tan(14) = 1 - [tan(46 + tan(14)]/√3 = 1 - tan(46)/√3 - tan(14)/√3 ........... (3)  For the 2st expression of E, use (1) : tan(74)tan(46) = 1 - [tan(74) + tan(46)]/tan(120) But tan(120) = -√3, so, tan(74)tan(46) = 1 - [tan(74) + tan(46)]/(-√3) = 1 + tan(74)/√3 + tan(46)/√3 ..... (4)  For the 3st expression of E, use (2) : -tan(74)tan(14) = -{[tan(74) - tan(14)]/tan(60) - 1} But tan(60) = √3, so, -tan(74)tan(14) = -{[tan(74) - tan(14)]/√3 - 1} = -tan(74)/√3 + tan(14)/√3 + 1 .... (5)  Now add, (3) + (4) + (5), which gives the answer, E = 3.

All the best.
Win exciting gifts by answering the questions on Discussion Forum. So help discuss any                      query on askiitians forum and become an Elite Expert     League            askiitian.

Sagar Singh
B.Tech, IIT Delhi

```
7 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Trigonometry

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details