MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
kedar joshi Grade: 10
        

explain hybridisation(orgqanic chemistry)

6 years ago

Answers : (2)

AKASH GOYAL AskiitiansExpert-IITD
419 Points
										

Dear Kedar


It is the imaginary mixing of the 2s, 2px, 2py and 2pz atomic orbitals of carbon to form a new set of 'hybrid' orbitals that orient themselves in the desired VSEPR geometry.  The hybrid orbitals are equivalent to one another making all orbital overlaps equivalent, therefore, all C-H bonding interactions equivalent.



Hybrid orbitals are named by considering the type and number of atomic orbitals from which they arose.  For CH4 then the hybridisation for the carbon is sp3


Types of Hybridisations


 


sp3 hybrids


The first step in hybridisation is the excitation of one (or more) electrons (we consider the carbon atom in methane, for simplicity of the discussion):


C^{*}\quad \frac{\uparrow\downarrow}{1s}\; \frac{\uparrow\,}{2s}\; \frac{\uparrow\,}{2p_x} \frac{\uparrow\,}{2p_y} \frac{\uparrow\,}{2p_z}


The proton that forms the nucleus of a hydrogen atom attracts one of the lower-energy valence electrons on carbon. This causes an excitation, moving a 2s electron into a 2p orbital.


In the case of carbon attempting to bond with four hydrogens, four orbitals are required. Therefore, the 2s orbital (core orbitals are almost never involved in bonding) "mixes" with the three 2p orbitals to form four sp3 hybrids (read as s-p-three). See graphical summary below.


becomes C^{*}\quad \frac{\uparrow\downarrow}{1s}\; \frac{\uparrow\,}{sp^3}\; \frac{\uparrow\,}{sp^3} \frac{\uparrow\,}{sp^3} \frac{\uparrow\,}{sp^3}


In CH4, four sp3 hybridised orbitals are overlapped by hydrogen's 1s orbital, yielding four σ (sigma) bonds (that is, four single covalent bonds). The four bonds are of the same length and strength. This theory fits our requirements.


A schematic presentation of hybrid orbitals overlapping hydrogens' s orbitals translates into Methane's tetrahedral shape


An alternative view is: View the carbon as the C4− anion. In this case all the orbitals on the carbon are filled:


C^{4-}\quad \frac{\uparrow\downarrow}{1s}\; \frac{\uparrow\downarrow}{2s}\; \frac{\uparrow\downarrow}{2p_x} \frac{\uparrow\downarrow}{2p_y} \frac{\uparrow\downarrow}{2p_z}


If we now recombine these orbitals with the empty s-orbitals of 4 hydrogens (4 protons, H+) and allow maximum separation between the 4 hydrogens (i.e., tetrahedral surrounding of the carbon), we see that at any orientation of the p-orbitals, a single hydrogen has an overlap of 25% with the s-orbital of the C, and a total of 75% of overlap with the 3 p-orbitals (see that the relative percentages are the same as the character of the respective orbital in an sp3-hybridisation model, 25% s- and 75% p-character).


sp2 hybrids


Other carbon based compounds and other molecules may be explained in a similar way as methane. Take, for example, ethene (C2H4). Ethene has a double bond between the carbons


For this molecule, carbon will sp2 hybridise, because one π (pi) bond is required for the double bond between the carbons, and only three σ bonds are formed per carbon atom. In sp2 hybridisation the 2s orbital is mixed with only two of the three available 2p orbitals:


C^{*}\quad \frac{\uparrow\downarrow}{1s}\; \frac{\uparrow\,}{sp^2}\; \frac{\uparrow\,}{sp^2} \frac{\uparrow\,}{sp^2} \frac{\uparrow\,}{p}


forming a total of 3 sp2 orbitals with one p-orbital remaining. In ethylene (ethene) the two carbon atoms form a σ bond by overlapping two sp2 orbitals and each carbon atom forms two covalent bonds with hydrogen by ssp2 overlap all with 120° angles. The π bond between the carbon atoms perpendicular to the molecular plane is formed by 2p–2p overlap. The hydrogen-carbon bonds are all of equal strength and length, which agrees with experimental data


sp hybrids


The chemical bonding in compounds such as alkynes with triple bonds is explained by sp hybridization.


C^{*}\quad \frac{\uparrow\downarrow}{1s}\; \frac{\uparrow\,}{sp}\; \frac{\uparrow\,}{sp} \frac{\uparrow\,}{p} \frac{\uparrow\,}{p}


In this model, the 2s orbital mixes with only one of the three p-orbitals resulting in two sp orbitals and two remaining unchanged p orbitals. The chemical bonding in acetylene (ethyne) (C2H2) consists of spsp overlap between the two carbon atoms forming a σ bond and two additional π bonds formed by pp overlap. Each carbon also bonds to hydrogen in a sigma ssp overlap at 180° angles.


 


All the best.


AKASH GOYAL


AskiitiansExpert-IITD


 


Please feel free to post as many doubts on our discussion forum as you can. We are all IITians and here to help you in your IIT JEE preparation.


Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.


Now you score 5+15 POINTS by uploading your Pic and Downloading the Askiitians Toolbar  respectively : Click here to download the toolbar..

6 years ago
vikas askiitian expert
510 Points
										

see this example


 CH2=CH-CH2-CH2-CH=C=CH


from left


 C1 , C2 ,C5,C7  are bonded with one1 double bond so hybridisation =SP2


 C3 ,C4   there is no double bond so hybridisation is SP3 


C6 is bonded with two double bonds so hyberdisation =SP


triple bond = 2 double bond & 1 sigma,


so any carbon bonded through triple bond is SP hybridised


 


 

6 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies
  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: Rs. 15,900
  • View Details

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details