Use Coupon: CART20 and get 20% off on all online Study Material

Total Price: R

There are no items in this cart.
Continue Shopping
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

Get extra R 500 off


function of LDA with support of an example

6 years ago


Answers : (1)

										Linear Discriminant Analysis (LDA)

The basic idea of LDA is simple: for each class to be identified, calculate a (different) linear function of the attributes. The class function yielding the highest score represents the predicted class.

There are many linear classification models, and they differ largely in how the coefficients are established. One nice quality of LDA is that, unlike some of the alternatives, it does not require multiple passes over the data for optimization. Also, it naturally handles problems with more than two classes and it can provide probability estimates for each of the candidate classes.

Some analysts attempt to interpret the signs and magnitudes of the coefficients of the linear scores, but this can be tricky, especially when the number of classes is greater than 2.

LDA bears some resemblance to principal components analysis (PCA), in that a number of linear functions are produced (using all raw variables), which are intended, in some sense, to provide data reduction through rearrangement of information. (See the Feb-26-2010 posting to this log,Principal Components Analysis.) Note, though, some important differences: First, the objective of LDA is to maximize class discrimination, whereas the objective of PCA is to squeeze variance into as few components as possible. Second, LDA produces exactly as many linear functions as there are classes, whereas PCA produces as many linear functions as there are original variables. Last, principal components are always orthogonal to each other ("uncorrelated"), while that is not generally true for LDA's linear scores.

Note that theLDAfunction assumes that the data its being fed is complete (no missing values) and performs no attribute selection.

Use ofLDAis straightforward: the programmer supplies the input and target variables and, optionally, prior probabilities. The function returns the fitted linear discriminant coefficients. a good example:

% Generate example data: 2 groups, of 10 and 15, respectively
X = [randn(10,2); randn(15,2) + 1.5]; Y = [zeros(10,1); ones(15,1)];

% Calculate linear discriminant coefficients
W = LDA(X,Y);

This example randomly generates an artificial data set of two classes (labeled 0 and 1) and two input variables. The LDA function fits linear discriminants to the data, and stores the result inW. So, what is inW?take a look:

>> W

W =

-1.1997 0.2182 0.6110
-2.0697 0.4660 1.4718

The first row contains the coefficients for the linear score associated with the first class (this routine orders the linear functions the same way asunique()). In this model, -1.1997 is the constant and 0.2182 and 0.6110 are the coefficients for the input variables for the first class (class 0). Coefficients for the second class's linear function are in the second row. Calculating the linear scores is easy:

% Calulcate linear scores for training data
L = [ones(25,1) X] * W';

Each column represents the output of the linear score for one class. In this case, the first column is class 0, and the second column is class 1. For any given observation, the higher the linear score, the more likely that class. Note that LDA's linear scores are not probabilities, and may even assume negative values. Here are the values from my run:

>> L

L =

-1.9072 -3.8060
1.0547 3.2517
-1.2493 -2.0547
-1.0502 -1.7608
-0.6935 -0.8692
-1.6103 -2.9808
-1.3702 -2.4545
-0.2148 0.2825
0.4419 1.6717
0.2704 1.3067
1.0694 3.2670
-0.0207 0.7529
-0.2608 0.0601
1.2369 3.6135
-0.8951 -1.4542
0.2073 1.1687
0.0551 0.8204
0.1729 1.1654
0.2993 1.4344
-0.6562 -0.8028
0.2195 1.2068
-0.3070 0.0598
0.1944 1.2628
0.5354 2.0689
0.0795 1.0976

To obtain estimated probabilities, simply run the linear scores through the softmax transform (exponentiate everything, and normalize so that they sum to 1.0):

% Calculate class probabilities
P = exp(L) ./ repmat(sum(exp(L),2),[1 2]);

As we see, most of the first 10 cases exhibit higher probabilities for class 0 (the first column) than for class 1 (the second column) and the reverse is true for the last 15 cases:

>> P

P =

0.8697 0.1303
0.1000 0.9000
0.6911 0.3089
0.6705 0.3295
0.5438 0.4562
0.7975 0.2025
0.7473 0.2527
0.3782 0.6218
0.2262 0.7738
0.2619 0.7381
0.1000 0.9000
0.3157 0.6843
0.4205 0.5795
0.0850 0.9150
0.6363 0.3637
0.2766 0.7234
0.3175 0.6825
0.2704 0.7296
0.2432 0.7568
0.5366 0.4634
0.2714 0.7286
0.4093 0.5907
0.2557 0.7443
0.1775 0.8225
0.2654 0.7346

This model is not perfect, and would really need to be tested more rigorously (via holdout testing, k-fold cross validation, etc.) to determine how well it approximates the data.

will not demonstrate its use here, but theLDAroutine offers a facility for modifying the prior probabilities. Briefly, the function assumes that the true distribution of classes is whatever it observes in the training data. Analysts, however, may wish to adjust this distribution for several reasons, and the third, optional, parameter allows this. Note that the LDA routine presented here always performs the adjustment for prior probabilities: Some statistical software drops the adjustment for prior probabilities altogether if the user specifies that classes are equally likely, and will produce different results thanLDA.
one year ago

Post Your Answer

Other Related Questions on Organic Chemistry

can i know which book can i refer for jee mains with basics i m very back at basics
@ ram , i think u are asking for the organic chemistry . if so, then start with ncert , with reading of ncert , your besic will get strong as it explains each and every mechanism step by...
Umakant biswal 25 days ago
Is benzene is the only example of resonance...? Please give me some of the more examples of resonance
SAHIL 24 days ago
Resonance can be showed by many other ion like the phenoxide ion, NO2 ion oxalate ion the aniline molecule
Amay chugh 19 days ago
examples for stereo centres which are not chiral centres
Dear student Stereocentre- If there is no plane of symmetry in the molecule of an organic compound, we say it is having a stereocentre. Chiral Centre/Chiral Carbon Atom - If in a moelcule...
Bhavya one month ago
Assuming pure 2s and 2p orbitals of Carbon are used in forming CH4 molecule, which if the following is false? (a) 3 C-H bonds will be at right angles (b) 1 C-H bond will be weaker than other...
CH4 has tetrahederal structure orientation with sp3 hybridization. hece 4 C-H bonds would be at equal angles with each C-H bond. and that would be 109.5 degree and that is practically...
Vikas TU one month ago
how ClF3 is formed by sp3d hybridisation though Cl has 2 paired orbitals after exitation of electrons to d-orbital
Oh so EaSy. Formula for hybridisation isn=[no. Of v.e. +mono valent atom other than central atome +nagetive charg - positive charg on compoundTake a lookEx. Hybridisation. In...
2017 years ago
The outer most orbital of Cl is 3rd orbital .In this orbital 1electron jump from 3p^5 subshell to vacant 3d .So two unpaired in P and one unpaired in d .hence 3 F atom comes and bond formed...
-1 hours ago
What is the unit of si(probability amplitude)?Plzz urgent..
@ shivam in quantu mechanics a probability amplitude is a complex number used in describing the behaviour of the system . its unit will be m ^ -3/2 where m is meter . HOPE IT CLEARS NOW ALL ...
Umakant biswal 3 days ago
Sir, i am asking about si which is the probability wave function like for an electron.. I hope u understand
Shivam Raina 3 days ago
Normal atmospheric pressure is 14.7 psi , which means that a column of air one square inch in area rising from the Earth's surface up to space weighs 14.7 pounds. Normal atmospheric...
Umakant biswal 3 days ago
View all Questions »

  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 3,750 off

Get extra R 500 off

More Questions On Organic Chemistry

Ask Experts

Have any Question? Ask Experts

Post Question

Answer ‘n’ Earn
Attractive Gift
To Win!!!
Click Here for details