Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

• Complete Physics Course - Class 11
• OFFERED PRICE: R 2,800
• View Details
Get extra R 2,800 off
USE CODE: chait6

```				   the potential energy of theparticle moving along the x-axis is given by U(X)=8x^2+2x^4 where U is in the joule and x is in m.if total mechinal energy is 9j,then limits of motion are
```

6 years ago

Share

```										Hi,
the given equation is for a conservative force only, we can get the equation of force wrt x but its not important here. Now since potential energy is defined only for conservative forces and total mechanical energy is conserved, hence the sum of Kinetic and Potential energy is constant = 9J. Also, U(x) = 8x^2 + 2x^4. Diffrentiating, dU/dx = 16x + 8x^3. For finding maxima and minima, the diff. should be 0. hence 8x(2+x^2) = 0 which gives x= 0 as the only solution, which is the minimum value of potential energy (=0, obviously). Here Kinetic energy is max. Also note that there are no other points obtained from this differentiation, so no maxima is defined else where, except where potential energy is max. and Kinetic energy becomes 0. We get the required vaues from the initial eqn. =>8x^2 + 2x^4 = 9 (which is the max value, that either KE or PE can take.)  taking x^2 as t, we get a quadratic equation, which on solving gives:
t = x^2 = (-8+/- 2v(34))/4 (check it -b +/- v(b^2-4ac)/2a). Here we neglect the -ve sign becausex^2 can't be -ve. Hence we take only the +ve value of this Q solution. Now this is the value of x^2, take roots of this value again and you get the values of the limits, both +ve and -ve value of x are to be taken. (limits are when U is max for +ve x and for -ve x, for both conditions KE is 0). Here finally on solving x^2, you get : x = +/- 0.95 m(approx).
Thanks

```
6 years ago
```										Dear student Mr. Jauneet;
The given equation is for a conservative force only, we can get the equation of force wrt x but its not important here. Now since potential energy is defined only for conservative forces and total mechanical energy is conserved, hence the sum of Kinetic and Potential energy is constant = 9J. Also, U(x) = 8x^2 + 2x^4. Diffrentiating, dU/dx = 16x + 8x^3. For finding maxima and minima, the diff. should be 0. hence 8x(2+x^2) = 0 which gives x= 0 as the only solution, which is the minimum value of potential energy (=0, obviously). Here Kinetic energy is max. Also note that there are no other points obtained from this differentiation, so no maxima is defined else where, except where potential energy is max. and Kinetic energy becomes 0. We get the required vaues from the initial eqn. =>8x^2 + 2x^4 = 9 (which is the max value, that either KE or PE can take.) taking x^2 as t, we get a quadratic equation, which on solving gives: t = x^2 = (-8+/- 2v(34))/4 (check it -b +/- v(b^2-4ac)/2a). Here we neglect the -ve sign becausex^2 can't be -ve. Hence we take only the +ve value of this Q solution. Now this is the value of x^2, take roots of this value again and you get the values of the limits, both +ve and -ve value of x are to be taken. (limits are when U is max for +ve x and for -ve x, for both conditions KE is 0). Here finally on solving x^2, you get : x = +/- 0.95 m(approx).

Please feel free to post as many doubts on our discussion forum as you can.
If you find any question Difficult to understand - post it here and we will get you the answer and detailed
solution very  quickly.

All the best.
Regards,
Pramod Kumar
IITR Alumni
```
6 years ago

# Other Related Questions on Mechanics

a packet is released from a balloon accelerating upward with acceleration a. the acceleration of packet just after the release is

Since the ballon was moving upward with acceleration a, there is a force of gravity on the packet too. The balloon is moving upward bexause the reaction force R>W, weight of the packet. As...

 Shaswata Biswas 3 months ago

Just after the release the packet posses only the component of the velocity aquired. Here the accleration of the balloon has no effect on the acceration of the body. When the body is...

 Shaswata Biswas 3 months ago

The accleration of the packet will be `g` acting downward as no external force other then gravity working on it.it will achieve the case of free fall. If I am wrong please ..explain the...

 Chandan kumar mandal 2 months ago
The potential energy of a particle of mass 1kg moving along x-axis is given by U(x)=[x^2/2-x]J. If total mechanical energy of the particle is 2J find its maximum speed.

total mechanical energy = U+ K.E to attain maximum speed the obect must have maximum K.E as K.E will be maximum , U has to be minimum (conservation of energy )given - U(x) = x²/2-xfor this...

 fizaparveen 2 months ago

We know that the object accelerate till force is applied on it and it attains maximum velocity just after the force becomes zero... SO we know the negative of potential energy gradient is...

 Suraj Singh 20 days ago

Ans- 2Speed will be max when kinetic energy is maximum so potential energy will be minimum so differentiating the function put it equal to 0 so we obtain minimum for x=0 now kin potential...

 rishabh doshi 2 months ago
if a body move with u velocity then after collide with wall and remove with v velocity what is the impulse

Hi aman, I think this might help as we know that Impulse and also F=m(dv/dt) so (here m is the mass of body and dv/dt =acc) here p is the momentum ans delta p is change in momentum hence in...

 Ankit Jaiswal 3 months ago
what is work energy thereom...................................?

The work-energy theorem is a generalized description of motion which states that work done by the sum of all forces acting on an object is equal to change in that object’s kinetic energy....

 dolly bhatia one month ago

The work W done by the net force on a particle equals the change in the particle`s kinetic energy KE: W = Δ K E = 1 2 m v f 2 − 1 2 m v i 2 . The work-energy theorem can be derived from...

 Sushmit Trivedi one month ago

For any net force acting on a particle moving along any curvilinear path, it can be demonstrated that its work equals the change in the kinetic energy of the particle by a simple derivation...

 rahul kushwaha 3 months ago
The cieling of long hall is 25 m high What is the maximum horizontal distance that a ball thrown with a speed of 40 ms can go without hitting the ceiling of wall? Plz explain with a DIAGRAM

Let the angle of throwing be Q with respect to the ground So, the range is R = 40*cosQ*t where t = time taken reach ground. Now, we know the time taken to reach the top of its flight is half...

 Tapas Khanda 5 months ago

Let the angle of throwing be Q with respect to the ground So, the range is R = 30*cosQ*t where t = time taken reach ground. Now, we know the time taken to reach the top of its flight is half...

 Tapas Khanda 5 months ago

Diagram is not required to solve this question. You can directly use the formula to find range : R = (v^2/g)*sin2Q Maximum height reached, H = v^2*sin^2Q/2g So, 25 = 40^2*sin^2Q/(2*9.8) So,...

 Tapas Khanda 5 months ago
What harmfull gases are produced when we burn plastics? And can we burn plastics?

I`m doing a project, can someone help me, How to reduce those toxic contents when plantic are burnt Like sulphur, nitrogen etc

 2017 years ago
View all Questions »

• Complete Physics Course - Class 12
• OFFERED PRICE: R 2,600
• View Details
Get extra R 2,600 off
USE CODE: chait6

• Complete Physics Course - Class 11
• OFFERED PRICE: R 2,800
• View Details

Get extra R 2,800 off
USE CODE: chait6

More Questions On Mechanics

Post Question