Area bouned by the region [x]^2=[y]^2 of x belongs to [1,5] (where [.] denotes the greatest integer function)

2 years ago

Share

Answers : (1)

                    

Hi Debadutta,


 


Let 1≤x<2. So [x] = 1.


And [y]^2 = 1 or [y] = ± 1.


means 1≤y<2 or -1≤y<0.


So in this region you will have two squares each of area 1 unit.


So when 1≤x<2 the area will be 2 sq units.


 


Similarly when 2≤x<3 the area = 2 sq untis


And 3≤x<4, area = 2 sq untis.


and 4≤x<5, area = 2 sq units.


 


So total area in the region would be 2+2+2+2 = 8 sq untis.


 


Regards,


Ashwin (IIT Madras).

2 years ago

Post Your Answer

More Questions On Integral Calculus

Ask Experts

Have any Question? Ask Experts
Post Question
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!!
Click Here for details
integration 0 to 5 ([x]{x} )
 
 
is the answer correct???? just break the interval ie, integrate from 0 to 1, then 1 to 2.... till 5.... when you integrate from 0 to 1, [x] will be zero, agreed? similarly from 1 to 2, [x]=1...
 
Varun Acharya 6 months ago
 
ok! thank you so much
 
shruti 4 months ago
 
ans = 5
 
Varun Acharya 7 months ago
what is the integration of (sin -1 x) 2?
 
 
?(sin -1 x) 2 dx put sin -1 x=t => x=sint dx=cost dt ?t 2 costdt =t 2 sint-?2t.sintdt =t 2 sint-2[-tcost+?costdt] =t 2 sint+2tcost-2sint +C =(sin -1 x) 2 x+2sin -1 xv(1-x 2 )-2x+ C Thanks...
  img
Rinkoo Gupta one month ago
Please calculate the integral limit is (0 to pi/4) ∫ln(1+tanx) dx
 
 
Dear student, We have: J = ∫ ln { 1 + tan [ (π/4) - x ] } dx ... on [0,π/4] ...= ∫ ln { 1 + [ ( 1 - tan x ) / ( 1 + tan x ) ] } dx ...= ∫ ln { 2 / ( 1 + tan x ) } dx ...=...
  img
Sumit Majumdar 10 days ago
Prove that: (cosecA – secA) (cotA – tanA) = (cosecA + secA) (secA cosecA – 2)
 
 
RHS=cosecA+secA)(secAcosecA-2) =(1/sinA+1/cosA){(1/cosA)(1/sinA)-2} =[(cosA+sinA)/(sinAcosA) ][(1-2sinAcosA)/(sinAcosA)] =[(cosA+sinA)/(sinAcosA)][(cosA-sinA) 2 /(sinAcosA)]...
  img
Rinkoo Gupta one month ago
 
Thank you so much.....!
 
Aniket Pathak one month ago
Cos(2pi/2n+1) +cos(4pi/2n+1)+cos(6pi/2na1).......+cos(2npi/2n+1)
 
 
Hello Student, let x=2pi/(2n+1) => cosx+cos2x+cos3x+cos4x.......cosn=sin((n+1)x/2)cos(nx/2)/sin(x/2) replace x by its value Thanks & Regards Arun Kumar Btech, IIT Delhi Askiitians...
  img
Arun Kumar one month ago
 
Dear student, You may use the following result: Let Now multiply both members with Using the identity we have Then Substitute with Then Regards Sumit
  img
Sumit Majumdar one month ago
the third term of a geometric progression is 4 product of first five term is?
 
 
Hello Student, Thanks & Regards Arun Kumar Btech, IIT Delhi Askiitians Faculty
  img
Arun Kumar 22 days ago
View all Questions »