Q 1 ) limx---->∞ (√ x √ x + √x  -  √ x )


Q 2) limx---->∞  x3/2 √ x3 + 1   -  √ x3 - 1


ans : 1


Q 3)  limx---->∞   1/ 1-n4 + 8 / 1-n4 + ........... + n3 / 1-n4


ans: - 1 / 4


 

2 years ago

Share

Answers : (2)

                                        

the answer is infinity

2 years ago
                                        

Ans 3.


(1+ 8 + 27 + ... + n3)/1-n


Since 13+23+33+...+n3 = (n(n+1))2/4   then


the expression becomes  (n(n+1))2/4(1-n4)


= ((n)2(n+1)2)/4(1-n4)


dividing the whole expression ny n4 . Now the expression is 


=(1)(1+1/n2))/4(1/n4-1)


= No since n->infinity 1/n tends to 0 thus byu using direct substitutions 


= 1/-4 =-1/4


2 years ago

Post Your Answer

More Questions On Integral Calculus

Ask Experts

Have any Question? Ask Experts
Post Question
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!!
Click Here for details
evaluate the following integral ∫ e^(x) + 1 / e^(x) + x dx
 
 
Ans: Hello student, Please find the answer to your question below
  img
Jitender Singh 2 months ago
 
Ans: Hello student, Please find the answer to your question below
  img
Jitender Singh 2 months ago
evaluate the following integral ∫ 1 + tan x / 1 – tan x dx
 
 
Ans: Hello student, Please find the answer to your question below
  img
Jitender Singh 2 months ago
evaluate the following integral ∫ cos x / 2 + 3 sin x dx
 
 
Ans: Hello student, Please find the answer to your question below
  img
Jitender Singh 2 months ago
w is cube root of unity then (1+w)^7=A+Bw then A,B are
 
 
Hello Student, Thanks & Regards Arun Kumar Btech, IIT Delhi Askiitians Faculty
  img
Arun Kumar 4 months ago
What is the integration of 7^xe^x dx
 
 
Hello Student, Thanks & Regards Arun Kumar Btech, IIT Delhi Askiitians Faculty
  img
Arun Kumar 4 months ago
(1 / sec a – tan a )–( 1 / cos a )= (1/ cos a) –( 1/ sec a + tan a) prove it.
 
 
LHS=1/seca-tana – 1/cosa = cosa /(1- sina) – 1/cosa = (cos 2 a – (1 – sina))/(1 – sina)(cosa) = (sina – sin 2 a)/(1 – sina)(cosa) = (sina)(1 – sina)/(1 – sina)(cosa) = tana RHS=1/cosa –...
 
Kaustubh Nayyar one month ago
View all Questions »