MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
manoj jangra Grade: 12
        

  • ∫sec2x√tanx .dx

8 years ago

Answers : (1)

Pratham Ashish
17 Points
										

hi.


I = ∫sec2x√tanx .dx


 let tan x = t^2


 then, sec^2x dx = 2t dt


        (1+ t^4)  dx = 2t dt


                    dx = 2t / (1+ t^4)   dt


  & cos 2x = 2 cos^2  x   -  1


               = 2 ( 1/  1+ t^4 )  ^2    -1  


                = 2 /  1+ t^4   -1


                =  1- t^4 /  1+ t^4


so   , sec 2x  =  1+ t^4 / 1- t^4


  put these values in I


   I = ∫   { 1+ t^4 / 1- t^4 } . t . {2t / (1+ t^4) } dt


       = ∫ 2 t^2 / 1- t^4    dt


 which can easily be evaluated by partial fraction


 


 


 


 


 


 


 

8 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies
  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: Rs. 15,900
  • View Details

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details