Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```        integration of ---1)          ∫(sin-1√x - cos-1√x)dx/ (sin-1 √x + cos-1√x)
2)           ∫√[(a-x)/(x-b)]dx
3)          ∫[√(x2 + 1)[log(x2 + 1) — 2log x] /x4]dx
4)          ∫(log (log x)  +  1/(log x)2 )dx  =x[f(x)-g(x)] +c   --------f(x)=? and  g(x)=?
5)          ∫[xlog(x+ √(1 + x2)) / √(1+x2) ] dx   = A√(1 + x2)log(x + √(1 + x2))  + Bx + C-------A=? , B=?
6)          ∫cos{2tan-1√[(1-x) /(1+x)]}dx
7)          ∫[( ln x-1 ) / (1 + (ln x)2 )]dx
8)          ∫[(x4 + 1)/( x6 + 1 )] dx
9)          ∫ [x2 /(x4+1)]d[(x-1)/x]```
7 years ago

gOlU g3n|[0]uS
42 Points
```										 ∫[√(x2 + 1)[log(x2 + 1) — 2log x] /x4]dx
∫(x2 + 1/x2 )1/2 [ log(x2 + 1) - logx2/x3 ] dx
∫(1+ 1/x2 )1/2 [ log(1 + 1/x2 )/x3 ]dx
let 1 + 1/x2 = t2
-2*1/x3 dx =2t dt
1/x3 dx= -dt
-∫ t logt2 dt
-∫ t (2logt) dt.  using by parts solve!!
not forgot 2   uproved
```
7 years ago
gOlU g3n|[0]uS
42 Points
```										   ∫cos{2tan-1√[(1-x) /(1+x)]}dx
put  x = cos 2θ. 1-x = 2sin2 θ and 1+x = 2cos2 θ.
u get inside by solving     2tan-1 (tanθ ) = 2θ
dx = -2sin2θ
- ∫ 2cos 2θ *sin2θ dθ
-  ∫ sin4θ dθ
cos4θ/4 + c
cos 2 2θ -1 /2 + c =  ANS    x2  -1 /2 +c
```
7 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Integral Calculus

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details