Click to Chat

0120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: R 15,000
• View Details
Get extra R 3,750 off
USE CODE: SSPD25


as i wasn't able to cope up in the class when our coaching institute teacher was teachin circular motion and projectile motion. my basic concepts are not clear and so am not able to solve related numericals.pls suggest me a way so that i can clear my concepts.


7 years ago

Share

										For projectile motion I recommend to see my earlier post on this .
Foe circular motion , u must understand the vector naature of the motion .. how it changes the direction .
Please see the derivation of circular motion in HC Verma .
If you approach circular motion problem in proper vectror notation .. its not that tough .

Non-uniform circular motion
Consider an object which executes non-uniform circular motion, as shown in Fig. 61. Suppose that the motion is confined to a 2-dimensional plane. We can specify the instantaneous position of the object in terms of its polar coordinates  and . Here,  is the radial distance of the object from the origin, whereas  is the angular bearing of the object from the origin, measured with respect to some arbitrarily chosen direction. We imagine that both  and  are changing in time. As an example of non-uniform circular motion, consider the motion of the Earth around the Sun. Suppose that  the origin of our coordinate system corresponds to the position of the Sun. As the Earth rotates, its angular bearing , relative to the Sun, obviously changes in time.  However, since the Earth's orbit is slightly elliptical, its radial distance  from the Sun also varies in time. Moreover, as the Earth moves closer to the Sun, its rate of rotation speeds up, and vice versa. Hence, the rate of change of  with time is non-uniform.

Figure 61: Polar coordinates.

Let us define two unit vectors,  and  . Incidentally, a unit vector simply a vector whose length is unity.  As shown in Fig. 61, the radial unit vector  always points from the origin to the instantaneous position of the object. Moreover, the tangential unit vector   is always normal to  , in the direction of increasing . The position vector  of the object can be written

(270)

In other words, vector  points in the same direction as the radial unit vector  , and is of length . We can write the object's velocity in the form

(271)

whereas the acceleration is written

(272)

Here,  is termed the object's radial velocity, whilst  is termed the tangential velocity. Likewise,  is the radial acceleration, and  is the tangential acceleration. But, how do we express these quantities in terms of the object's polar coordinates  and ? It turns out that this is a far from straightforward task. For instance, if we simply differentiate Eq. (270) with respect to time, we obtain

(273)

where  is the time derivative of the radial unit vector--this quantity is non-zero because  changes direction as the object moves. Unfortunately, it is not entirely clear how to evaluate . In the following, we outline a famous trick for calculating , , etc. without ever having to evaluate the time derivatives of the unit vectors  and  .
Consider a general complex number,

(274)

where  and  are real, and  is the square root of  (i.e., ). Here,  is the real part of , whereas  is the imaginary part. We can visualize  as a point in the so-called complex plane: i.e., a 2-dimensional plane in which the real parts of complex numbers are plotted along one Cartesian axis, whereas the corresponding imaginary parts are plotted along the other axis.  Thus, the coordinates of  in the complex plane are simply (, ). See Fig. 62. In other words, we can use a complex number to represent a position vector in a 2-dimensional plane. Note that the length of the vector is equal to the modulus of the corresponding complex number. Incidentally, the modulus of  is defined

(275)

Figure 62: Representation of a complex number in the complex plane.

Consider the complex number  , where  is real. A famous result in complex analysis--known as de Moivre's theorem--allows us to split this number into its real and imaginary components:

(276)

Now, as we have just discussed, we can think of    as representing a vector in the complex plane: the real and imaginary parts of   form the coordinates of the head of the vector, whereas the tail of the vector corresponds to the origin. What are the properties of this vector? Well, the length of the vector is given by

(277)

In other words,   represents a unit vector. In fact, it is clear from Fig. 63 that   represents the radial unit vector  for an object whose angular polar coordinate (measured anti-clockwise from the real axis) is .  Can we also find a complex representation of the corresponding tangential unit vector  ? Actually, we can. The complex number   can be written

(278)

Here, we have just multiplied Eq. (276) by , making use of the fact that . This number again represents a unit vector, since

(279)

Moreover, as is clear from Fig. 63, this vector is normal to , in the direction of increasing . In other words,   represents the tangential unit vector  .

Figure 63: Representation of the unit vectors  and   in  the  complex plane.

Consider an object executing non-uniform circular motion in the complex plane. By analogy with Eq. (270), we can represent the instantaneous position vector of this object via the complex number

(280)

Here,  is the object's radial distance from the origin, whereas  is its angular bearing relative to the real axis. Note that, in the above formula, we are using   to represent the radial unit vector . Now, if  represents the position vector of the object, then   must represent the object's velocity vector. Differentiating Eq. (280) with respect to time, using the standard rules of calculus, we obtain

(281)

Comparing with Eq. (271), recalling that   represents  and   represents  , we obtain

(282)

(283)

where   is the object's instantaneous angular velocity. Thus, as desired, we have obtained expressions for the radial and tangential velocities of the object in terms of its polar coordinates,  and . We can go further. Let us differentiate  with respect to time, in order to obtain a complex number representing the object's vector acceleration. Again, using the standard rules of calculus, we obtain

(284)

Comparing with Eq. (272), recalling that   represents  and   represents  , we obtain

(285)

(286)

Thus, we now have expressions for the object's radial and tangential accelerations in terms of  and . The beauty of this derivation is that the complex analysis has automatically taken care of the fact that the unit vectors  and   change direction as the object moves.
Let us now consider the commonly occurring special case in which an object executes a circular orbit at fixed radius, but varying angular velocity. Since the radius is fixed, it follows that  . According to Eqs. (282) and (283), the radial velocity of the object is zero, and the tangential velocity takes the form

(287)

Note that the above equation is exactly the same as Eq. (250)--the only difference is that we have now proved that this relation holds for non-uniform, as well as uniform, circular motion. According to Eq. (285), the radial acceleration is given by

(288)

The minus sign indicates that this acceleration is directed towards the centre of the circle. Of course, the above equation is equivalent to Eq. (259)--the only difference is that we have now proved that this relation holds for non-uniform, as well as uniform, circular motion. Finally, according to Eq. (286), the tangential acceleration takes the form

(289)

The existence of a non-zero tangential acceleration (in the former case) is the one difference between non-uniform and uniform circular motion (at constant radius).

7 years ago

Other Related Questions on Discuss with colleagues and IITians

A ball is released from height h along the slope and moves along a circular track of radius R without falling vertically downwards as shown in the figure. Show that h = 5 2 R.

fuck you nugget piece of shit ffffsafasfasfasfasfkksfasfafasfasfasfass ssfsafsfafasfsfasfasfsafahsue5kjfk

 prajit banerjee 13 days ago
FOR GETTING GOOD UNIVERSITY/COLLEGE IN IIT ENGINEERING WHAT MATTERS THE MOST,OVERALL PERCENTAGE OF 12TH STD OR JUST MARKS OF PCM.

hi xavier to get admission in a good iit college or in a nit or some good private institutions are your all over percentage matters and not only of PCM. THAT s why it is suggested to give...

 SAHIL 3 months ago

@ XAVIER That purely depend upon the colleges where u are seeking admission , in the case of iit , frst of all u need to qualify mains , and then u need to qualify advanced , and for mains...

 Umakant biswal 3 months ago
A motor van weighing 4400 kg rounds a level curve of radius 200 m on an unbanked road at 60 km/hr. What should be minimum value of coefficient of friction to prevent skidding? At what angle ...

Hi I got the first part . But second i got a negative value that tan theta = -0.001. let c be coefficient of friction. v= root(cgr) so 50/3 = root( c *2000) so 2500/9 = c*2000 so c= 5/ 36 = ...

 Devansh Jatin Ponda 2 months ago
About correspondence course.. does the offline option include online as well?

 Piyush 5 months ago

http://www.askiitians.com/online-study-packages/complete-aipmt-aiims-course-and-test-series – I could see 2 options. Online package and offline with pen drive access. If I choose the...

 Senthil 5 months ago
sir, i am Nilay frm Rajkot. now i am in second year engineering but my medical problem i dropped so i am now free for sixth months. i want to join a coaching classes. so i want to know...

Hi Nilay, As you are in engineering second that implies you have completed your 12th two years back i hope so.... but for JEE only two attempts that too consecutively--one in 12th and other ...

 askiitian.expert- chandra sekhar 6 years ago
JAMES HAS x CHILDREN WITH HIS FIRST WIFE. MARY HAS x+1 CHILDREN WITH HER FIRST HUSBAND .THEY MARY EACH OTHER AND HAVE CHILDREN OF THEIR OWN .THERE ARE TOTAL 24 CHILDRENS. ASSUMING THAT NO...

Dear rahul let james and mary have y children x+(x+1) +y=24 y= 23-2x so total number of fight = 24 C 2 these fights also include firght among the children of same parents. so children of...

View all Questions »

• Complete AIPMT/AIIMS Course and Test Series
• OFFERED PRICE: R 15,000
• View Details
Get extra R 3,750 off
USE CODE: SSPD25

• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: R 15,000
• View Details

Get extra R 3,750 off
USE CODE: SSPD25

More Questions On Discuss with colleagues and IITians