MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
PRADEEP KUMAR Grade:
        if y= 1+(a/x-a)+(bx/(x-a)(x-b))+(cx^2/(x-a)(x-b)(x-c))

than show that
dy/dx=y/x[(a/a-x)+(b/b-x)+(c/c-x)].............
6 years ago

Answers : (2)

SAGAR SINGH - IIT DELHI
879 Points
										

Dear pradeep,



[a/(x-a)]+1=x/(x-a)

[bx/(x-b)(x-c)]+x/(x-a)=x/(x-a)[b/(x-b)+1]=x2/(x-a)(x-b)

So y={cx^2/ (x-a) (x-b) (x-c)} +x2/(x-a)(x-b)=x2/((x-a)(x-c))[c/(x-c)+1]

y=x3/(x-a)(x-b)(x-c)

logy=3logx-log(x-a)-log(x-b)-log(x-c)

y1/y=3/x+1/(a-x)+1/(b-x)+1/(c-x)

y1/y=[1/x-1/(x-a)]+[1/x-1/x-b]+[1/x-1/x-c]=1/x ( a/a-x + b/ b-x+ c/c-x)










Please feel free to ask your queries here. We are all IITians and here to help you in your IIT JEE preparation.


All the best.


Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.


Now you score 5+15 POINTS by uploading your Pic and Downloading the Askiitians Toolbar  respectively : Click here to download the toolbar..


 


Askiitians Expert


Sagar Singh


B.Tech, IIT Delhi









6 years ago
vikas askiitian expert
510 Points
										

y = 1 + a/(x-a) +bx/(x-a)(x-b) + cx2/(x-a)(x-b)(x-c)


breaking into different  functions


 


y = 1 +    f(x)1  +       f(x)2       +        f(x)3       


 


f(x)1=a/(x-a)    ,        f(x)2 =bx/(x-a)(x-b)   &   f(x)3 =cx2 /(x-a)(x-b)(x-c)


now


          dy/dx= d/dx(1) + d/dx(f(x)1) +d/dx(f(x)2) +d/dx(f(x)3) ....................................1


now separatly differentiatiating f(x)1 , f(x)2  , f(x)3  by taking log


  (taking log in both sides)


          d/dx[log(f(x)1)]  =  d/dx(loga/x-a)


                d/dx(f(x)1/f(x)1 = d/dx(loga - log(x-a) )                 


 


                     d/dx(f(x)1)=(-1/x-a)(f(x)1


                       d/dx(f(x)1) =    -a/(x-a)2


now separatly differentiate each of these and put in eq 1 ,u will get the required result

6 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies
  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details