Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```        Q.No-
39)  From a point P(1,0) , a tangent PA is drawn to the circle x2+y2-8x+12=0 , A being the point of contact. Find  the equations of the tangents to the circle from the middle point of PA if A is in the first quadrant.
41) A tangent is drawn to the circle (x-a)2 + y2 = b2 and a perpendicular tangent to the circle (x+a)2 + y2 = c2 . Find the locus of their intersection and prove that the bisectors of the angles between them always touch one or other of two other fixed circles.
90) The base of a triangle through a fixed point (a,b) and its sides are respectively bisected at right angles by the lines y2-8xy-9x2=0. Prove that the locus of the vertex is a circle. Find its Equation.

```
8 years ago

357 Points
```

<br/><!--
<br/> /* Font Definitions */
<br/> @font-face
<br/>	{font-family:"Cambria Math";
<br/>	panose-1:2 4 5 3 5 4 6 3 2 4;
<br/>	mso-font-charset:0;
<br/>	mso-generic-font-family:roman;
<br/>	mso-font-pitch:variable;
<br/>	mso-font-signature:-1610611985 1107304683 0 0 159 0;}
<br/>@font-face
<br/>	{font-family:Calibri;
<br/>	panose-1:2 15 5 2 2 2 4 3 2 4;
<br/>	mso-font-charset:0;
<br/>	mso-generic-font-family:swiss;
<br/>	mso-font-pitch:variable;
<br/>	mso-font-signature:-1610611985 1073750139 0 0 159 0;}
<br/>@font-face
<br/>	{font-family:Verdana;
<br/>	panose-1:2 11 6 4 3 5 4 4 2 4;
<br/>	mso-font-charset:0;
<br/>	mso-generic-font-family:swiss;
<br/>	mso-font-pitch:variable;
<br/>	mso-font-signature:536871559 0 0 0 415 0;}
<br/> /* Style Definitions */
<br/> p.MsoNormal, li.MsoNormal, div.MsoNormal
<br/>	{mso-style-unhide:no;
<br/>	mso-style-qformat:yes;
<br/>	mso-style-parent:"";
<br/>	margin-top:0in;
<br/>	margin-right:0in;
<br/>	margin-bottom:10.0pt;
<br/>	margin-left:0in;
<br/>	line-height:115%;
<br/>	mso-pagination:widow-orphan;
<br/>	font-size:11.0pt;
<br/>	font-family:"Calibri","sans-serif";
<br/>	mso-ascii-font-family:Calibri;
<br/>	mso-ascii-theme-font:minor-latin;
<br/>	mso-fareast-font-family:Calibri;
<br/>	mso-fareast-theme-font:minor-latin;
<br/>	mso-hansi-font-family:Calibri;
<br/>	mso-hansi-theme-font:minor-latin;
<br/>	mso-bidi-font-family:"Times New Roman";
<br/>	mso-bidi-theme-font:minor-bidi;}
<br/>.MsoChpDefault
<br/>	{mso-style-type:export-only;
<br/>	mso-default-props:yes;
<br/>	mso-ascii-font-family:Calibri;
<br/>	mso-ascii-theme-font:minor-latin;
<br/>	mso-fareast-font-family:Calibri;
<br/>	mso-fareast-theme-font:minor-latin;
<br/>	mso-hansi-font-family:Calibri;
<br/>	mso-hansi-theme-font:minor-latin;
<br/>	mso-bidi-font-family:"Times New Roman";
<br/>	mso-bidi-theme-font:minor-bidi;}
<br/>.MsoPapDefault
<br/>	{mso-style-type:export-only;
<br/>	margin-bottom:10.0pt;
<br/>	line-height:115%;}
<br/>@page Section1
<br/>	{size:8.5in 11.0in;
<br/>	margin:1.0in 1.0in 1.0in 1.0in;
<br/>	mso-footer-margin:.5in;
<br/>	mso-paper-source:0;}
<br/>div.Section1
<br/>	{page:Section1;}
<br/>-->
<br/>

39. Dear Student,
Please have a look at the symmetry of the problem.

First let us find the coordinates of A(x, y).
One equation is –
(4–1)2 + (0–1)2 = (x–1)2 + (y–0)2 + (4–x)2 + (0–y)2                 …. (i)
Second equation is –
Slope of PA × slope of AL + –1                                              ….. (ii)
Solving these two equations you get the coordinates of A(x, y)
Then by applying mid-point formula, we get the coordinates of mid-point of PA say (x1, y1)
Then we get the equation of pair of tangents to the circle from (x1, y1) as
?S1 = T2
Where       S = x2 + y2 + 2fx + 2fy + c
S1 = S12 + y12 + 2fx1 + 2fy1 + c
and   T = x x1 + y y1 + y(x + x1) + f(y + y1) + c

```
8 years ago
357 Points
```										ANSWER 39

```
8 years ago
Think You Can Provide A Better Answer ?

Other Related Questions on Analytical Geometry

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details