MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
Aman Deep Singh Grade: 12
        

please tell me the derivative method to find out the total number of roots of any equation

7 years ago

Answers : (1)

SHAIK AASIF AHAMED
askIITians Faculty
74 Points
										Hello student,
please find the answer to your question below
Newton's method assumes the function f to have a continuous derivative. Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method, and is usually quadratic. Newton's method is also important because it readily generalizes to higher-dimensional problems. Newton-like methods with higher orders of convergence are the Householder's methods. The first one after Newton's method is Halley's method with cubic order of convergence.
[x : f(x) = 0]
The Newton–Raphson method in one variable is implemented as follows:
Given a function ƒ defined over the reals x, and its derivative ƒ', we begin with a first guess x0 for a root of the function f. Provided the function satisfies all the assumptions made in the derivation of the formula, a better approximation x1 is
[x{1} = x0 - {f(x0)}/{f'(x0)}
Geometrically, (x1, 0) is the intersection with the x-axis of the tangent to the graph of f at (x0, f (x0)).
The process is repeated as
[x{n+1} = xn -{f(xn)}/{f'(x_n)}
until a sufficiently accurate value is reached.
2 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies
  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 3,000 off
USE CODE: CART20
Get extra R 440 off
USE CODE: CART20

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details