Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
tushar a Grade: 11

PROVE THAT X^2+2XY+3Y^2-6X-2Y CANNOT BE LESS THAN -11. X,Y BELONG TO ALL REAL NOS.....THANKS FOR HELP!

8 years ago

## Answers : (1)

mycroft holmes
271 Points

Equivalently we have to prove that 2x2+4xy+6y2-12x-4y+22>=0

From Cauchy Schwarz (CS) Inequality, 4 [(x+2y)2+(y-1)2+(y-1)2+(x-6)2] >= (x+2y+1-y+1-y+6-x)2 = 64

Hence, (x+2y)2+(y-1)2+(y-1)2+(x-6)2 >= 16

or 2x2+4xy+6y2-12x-4y+22>=0

Since the CS equality condition cannot be met here, we have 2x2+4xy+6y2-12x-4y+22>0

8 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies

## Other Related Questions on Algebra

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details

## Ask Experts

Have any Question? Ask Experts

Post Question

Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details