Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
        If the sum of first n terms of an A.P. is cn2, then sum of squares of these n terms is?
ans:n(4n2-1)c2/3

HOW?
5 years ago

Pavan Kumar
39 Points
										If a is 1st term and d is common difference, sum of n terms = (n/2) (2a + (n-1)d) = (2an-nd) + n2d

comparing this with cn2 we get : 2an-nd = 0  and  d = c    =>    a = c/2,  d = c

sum of squares of n terms = $\sum_{r=1}^{n}(a+(n-1)d)^{2}$

$=\sum_{r=1}^{n}\left( \frac{c}{2}+(n-1)c\right)^{2}$

$=\sum_{r=1}^{n}c^{2}\left( n^{2}-n+\frac{1}{4}\right)$

$=c^{2}\left( \sum_{r=1}^{n}n^{2}-\sum_{r=1}^{n}n+\sum_{r=1}^{n}\frac{1}{4}\right)$

$=c^{2}\left(\frac{n(n+1)(2n+1)}{6}-\frac{n(n+1)}{2}+\frac{n}{4}\right)$

$=\frac{c^{2}n(4n^{2}-1)}{12}$

5 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Algebra

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details
Get extra Rs. 2,385 off
USE CODE: COUPON10
Get extra Rs. 350 off
USE CODE: COUPON10