plz solve -


Lt(x->0) (log(cos x)/(sinx)^2)


thanx in advance..

2 years ago

Share

Answers : (2)

                                        

Lt x->0 log(cos x)/ (sinx)2


Lt x->0 log [1 + (cosx - 1)]/(sinx)2                                         {Add and subtract 1}


Lt x->0 log [1 + (cosx - 1)](cosx - 1)/ (cosx - 1) (sin x)2          {Multiply divide by (cosx - 1)}


Lt x->0 {log [1 + (cosx - 1)]/ (cos x - 1)}  {(cosx - 1) / (sinx)2}


Lt x->0 {(log [1 + m])/ (m)} { - (1 - cosx)/ ??(sinx)2}


 Here m->0 as cosx - 1 ->0 when x-> o So, Standard limit Lt x->0  log[ 1 + x]/ x = 1


Lt x->0 {1} {- (1 - cosx)(x2) / (x2) (sinx)2                                            {Multiply divide by (sinx)2}


Lt x->0 - {(1- cosx) / (x2)} { (x2) / (sinx)2}


Using Standard limit Lt x->0 (1-cosx) / (x2) = 1/2 and Lt x->0  (x/ sinx)= 1, we get,


Lt x->0 - {1/2} { (1)2 }


Lt x->0 -1/2


= -1/2

2 years ago
                                        

Anmol , Ur answer is indeed right . but I want to do it by a simple method called L Hopitals rule.


Any problem yielding 0/0 by direct substition can be solved by the approach.


This method coveys tht any  limit yielding 0/0


lim f(x)/g(x) = {d f(x) /dx } / {d g(x) /dx }


Here in the question by direct substitution we get 0/0 So apply L Hopitals rule


Lt (x->0) log(cos(x))/(sinx)2 = Lt(x->0)d/dx {log(cos(x))} / d/dx {sin2x} = -1/2 cos2(x)  = -1/2 (By direct Substitution)

2 years ago

Post Your Answer

More Questions On Algebra

Ask Experts

Have any Question? Ask Experts
Post Question
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!!
Click Here for details
|z|=1 w=(z-1)/(z+1) re(w) ?
 
 
Hello Student, Thanks & Regards Arun Kumar Btech, IIT Delhi Askiitians Faculty
  img
Arun Kumar one month ago
prove that n 3 + 3n 2 + 5n + 3 is divisible by 3 for any natural number n
 
 
Hello Student, n^3 + 3n^2 + 5n + 3 =n^3 + 3n^2 + 2n+3n + 3 =n(n^2 + 3n + 2)+3n + 3 =n(n+1)(n+2)+3n+3 Prooved Thanks & Regards Arun Kumar Btech, IIT Delhi Askiitians Faculty
  img
Arun Kumar one month ago
 
By Fermat’s theorem, n 3 -n is divisible by 3. Hence n 3 +3n 2 +5n+3 = (n 3 -n)+(3n 2 +6n+3) = 3m+3(n+1) 2 for some integer m making the expression obviously a multiple of 3.
 
mycroft holmes one month ago
Let z 1 ,z 2 ,z 3 are three pairwise distinct complex numbers and t 1 ,t 2 ,t 3 are non negative real numbers such that t 1 +t 2 +t 3 =1. prove that the complex number z=t 1 z 1 +t 2 z 2 +t...
 
 
Let A represent the vertex z 1 , with B and C similarly defined. Let z be the point P We can write z = t 1 z 1 +t 2 z 2 +t 3 z 3 = t 1 z 1 +t 2 z 2 + (1-t 1 -t 2 )z 3 so that z-z 3 = t 1 (z...
 
mycroft holmes one month ago
what is meant by contunity of functions
 
 
Ans: Continuity of a function at a given point means that it should exist at the given point & left hand limit & right hand limit should exist & equal to each other &...
  img
Jitender Singh 2 months ago
Solve lim(x->inf) [x 2 +x+1/2x 2 +x+1] sinx/x
 
 
Ans: Hello Student, Please find answer to your question below
  img
Jitender Singh 22 days ago
View all Questions »