plz solve -


Lt(x->0) (log(cos x)/(sinx)^2)


thanx in advance..

2 years ago

Share

Answers : (2)

                                        

Lt x->0 log(cos x)/ (sinx)2


Lt x->0 log [1 + (cosx - 1)]/(sinx)2                                         {Add and subtract 1}


Lt x->0 log [1 + (cosx - 1)](cosx - 1)/ (cosx - 1) (sin x)2          {Multiply divide by (cosx - 1)}


Lt x->0 {log [1 + (cosx - 1)]/ (cos x - 1)}  {(cosx - 1) / (sinx)2}


Lt x->0 {(log [1 + m])/ (m)} { - (1 - cosx)/ ??(sinx)2}


 Here m->0 as cosx - 1 ->0 when x-> o So, Standard limit Lt x->0  log[ 1 + x]/ x = 1


Lt x->0 {1} {- (1 - cosx)(x2) / (x2) (sinx)2                                            {Multiply divide by (sinx)2}


Lt x->0 - {(1- cosx) / (x2)} { (x2) / (sinx)2}


Using Standard limit Lt x->0 (1-cosx) / (x2) = 1/2 and Lt x->0  (x/ sinx)= 1, we get,


Lt x->0 - {1/2} { (1)2 }


Lt x->0 -1/2


= -1/2

2 years ago
                                        

Anmol , Ur answer is indeed right . but I want to do it by a simple method called L Hopitals rule.


Any problem yielding 0/0 by direct substition can be solved by the approach.


This method coveys tht any  limit yielding 0/0


lim f(x)/g(x) = {d f(x) /dx } / {d g(x) /dx }


Here in the question by direct substitution we get 0/0 So apply L Hopitals rule


Lt (x->0) log(cos(x))/(sinx)2 = Lt(x->0)d/dx {log(cos(x))} / d/dx {sin2x} = -1/2 cos2(x)  = -1/2 (By direct Substitution)

2 years ago

Post Your Answer

More Questions On Algebra

Ask Experts

Have any Question? Ask Experts
Post Question
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!!
Click Here for details
If equation x^4+px^3+qx^2+rx+5=0 has four real roots then find the minimum value of p.r
 
 
Hello Student Thanks & Regards Arun Kumar Btech, IIT Delhi Askiitians Faculty
  img
Arun Kumar 3 months ago
please solve this question without substituion method which of the following is true (a,b,c>0)? 2(a^3 b^3 +c^3) greater than or equal bc(b+c) +ca(c+a) + ab(a+b) (a^3 + b^3 + c^3)/3 greater...
 
 
Hello student, Please find the answer to your question below (a)First you need to prove that for positive values of x and y x/y + y/x >= 2 (x - y)² + 2xy = x² + y² Divide...
  img
SHAIK AASIF AHAMED 2 months ago
 
We now Arithmatic mean (AM) > Harmonic mean (HM) ie., between any two number a,b (a+b)/2 >2ab/(a+b) => 2/(a+b) => 2/(a+b) similarily 2/(b+c) So, 2/(b+c) + 2/(c+a) + 2/(a+b) =>2/(b+c)...
 
Y RAJYALAKSHMI 2 months ago
consider a set {1,2,3.....40} what is the maximum number of elements possible in one of its its subset A={x:sum of no two elements in this set is a multiple of 5} [KVPY]
 
 
the subset is {1, 2, 5, 6, 7,11, 12, 16, 17, 21, 22, 26, 27, 31, 32, 36, 37}
 
Y RAJYALAKSHMI one month ago
View all Questions »