MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Vaibhav Mathur Grade: 12
        

 


Let  f(x)=[n+psinx], x belongs to(0,π), n belongs to Z, p is a prime number and [x] is a greatest integer less than or equal to x.The number of ponts at which f(x) is not differential is


a.p       


b.p-1


c. 2p+1


d. 2p-1

7 years ago

Answers : (2)

Ramesh V
70 Points
										

 


for X belongs to [0,pi] sin x lies in [0,1]


[sinx] is discontinuous at pi/2 , so not differentiable at it


and now considering [n + sin x] where sin x is just shifted by n units along Y axes , but still the values lie in ( n , n+1) and here too the curve will be discontinues/not differentiable at 1 point i.e., at pi/2


now taking p( a prime no.) into consideration,


for p=1 , we have [sinx] with 1 discontinues/not differentiable points


for p=2 , we have [2.sinx] with 3 discontinues/not differentiable points


for p=3 , we have [3.sinx] with 5 discontinues/not differentiable points


.


...


for p = p ,it follows to (2p-1) discontinues/not differentiable points


option is D

7 years ago
mycroft holmes
266 Points
										

[n +  p sin x] = n + [p sin x].


The points of discontinuity and hence of non-differentiability are the points where p sin x is an integer. There are no other points of non-differentiability.


 


So, the points of discontinuity are when sin x = 1/p or 2/p,..., (p-1)/p each of which have two corresponding values of x and sin x = 1, which has a unique solution in the given interval.


 


That makes 2(p-1)+1 = 2p-1 solutions


 

7 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies
  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: Rs. 15,900
  • View Details
Get extra Rs. 3,180 off
USE CODE: CART20
Get extra Rs. 466 off
USE CODE: CART20

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details